US009430715B1

a2 United States Patent

10) Patent No.: US 9,430,715 B1

Wang et al. 45) Date of Patent: Aug. 30,2016
(54) IDENTIFYING AND MODIFYING CAST (56) References Cited
SHADOWS IN AN IMAGE
U.S. PATENT DOCUMENTS
(71) Applicant: Adobe Systems Incorporated, San)
8,965,106 B1* 2/2015 Faridcccevvvveen GO6T 7/0002
Jose, CA (US) 1807154
(72) Inventors: Jue Wang, Kenmore, WA (US); OTHER PUBLICATIONS
Kalyan Sunkavalli, San Jose, CA (US);
Li-Qian Ma, Beijing (CN); Elya Baba, M., Mukunoki, M., and Asada, N. 2004. Shadow removal
Shechtman, Seattle, WA (US) from a real image based on shadow density. In ACM SIGGRAPH
2004 Posters.
(73) Assignee: ADOBE SYSTEMS Barnes, C., Shechtman, E., Fir_lkelstein, A., and Gold Ma_n, D. B.
INCORPORATED, San Jose, CA (US) 2009. Pat.chmatch:.z.l randomized correspondence algorithm for
structural image editing. ACM Trans. Graph. 28, 3, 24:1-24:11.
. Barnes, C., Shechtman, E., Goldman, D. B., and Finkel Stein, A.
(*) Notice: SubJeCt. to any dlSCIalmer’. the term of this 2010. The generalized patchmatch correspondence algorithm. In
patent is extended or adjusted under 35 Proc. of ECCYV, 29-43.
US.C. 154(b) by 0 days. Barrow, H. G., and Tenenbaum, J. M. 1978. Recovering intrinsic
scene characteristics from images. In International Conference on
(21) Appl. No.: 14/702,588 Computer Vision Systems.
(22) Filed: May 1, 2015 (Continued)
(51) Imt. CL Primary Examiner — Anh Do
GO6K 9/34 (2006.01) (74) Attorney, Agent, or Firm — Keller Jolley Preece
GO6K 9/46 (2006.01)
GO6T 5/00 (2006.01) (57) ABSTRACT
GO6K 9/42 (2006.01) Methods and systems for detection and removal of cast
GO6T 7/00 (2006.01) shadows from an image. In particular, one or more embodi-
GO6K 9/40 (2006.01) ments compute correspondences between image patches in
GO6K 9/44 (2006.01) the image using a grid-based patch-matching algorithm. One
GO6K 9/62 (2006.01) or more embodiments then train a regression model to detect
GO6K 9/66 (2006.01) shadows from the computed patch correspondences. One or
(52) US. CL more embodiments then segment the detected shadows into
CPC .o GO6K 9/4661 (2013.01); GOGK 9/40 shadow regions and identify cast shadows from the shadow
(2013.01); GO6K 9/42 (2013.01); GO6K 9/44 regions. Once the cast shadows are identified, one or more
(2013.01); GO6K 9/4638 (2013.01); GO6K embodiments use patch-based synthesis of pixels guided by
9/6218 (2013.01); GO6K 9/66 (2013.01); GO6T a direct inversion of the image. Optionally, one or more
5/001 (2013.01); GO6T 7/0081 (2013.01) methods can use pixels from the synthesized image and the
(58) Field of Classification Search naive inversion of the image, based on a synthesis confi-

USPC ... 382/164, 274, 154, 100, 110, 113, 291,
1/1; 209/580; 345/426, 515; 348/89
See application file for complete search history.

960

\

dence of each pixel, to produce a combined result.

20 Claims, 13 Drawing Sheets

Segmenting An Input Image Into A Pluraiity Of Grid Cells

902

l

Dstermining Nearest Neighbor Patches For image Patches Of The input image

l

Detecting Shadows In The Input Image L

l

Segmenting The Detected Shadows Into Shadow Regions.

tdentifying A Cast Shadow In The input Image

910

US 9,430,715 B1
Page 2

(56) References Cited

OTHER PUBLICATIONS

Bonneel, N., Sunkavalli, K., Tompkin, J., Sun, D., Paris, S., and
Pfister, H. 2014. Interactive intrinsic video editing. ACM Trans.
Graph. 33, 6.

Comaniciu, D., and Meer, P. 2002. Mean shift: A robust approach
toward feature space analysis. IEEE Trans. PAMI 24, 5, 603-619.
Cucchiara, R., Grana, C., Piccardi, M., Prati, A., and Sirotti, S. 2001.
Improving shadow suppression in moving object detection with hsv
color information. In Intelligent Transportation Systems, IEEE,
334-339.

Darabi, S. Shechtman, E., Barnes, C., Goldman, D. B., and Sen, P.
2012. Image Melding: Combining inconsistent images mages using
patch-based synthesis. ACM Trans. Graph. 31, 4, 82:1-82:10.
Ecins, A., Fermiijller, C., and Aloimonos, Y. 2014. Shadow free
segmentation in still images using local density measure. IEEE
Computer Society.

Finlayson, G. D., Hordley, S. D., Lu, C., and Drew, M. S. 2002.
Removing shadows from images. In Proc. of ECCV, 823-836.
Finlayson, G., Drew, M., and Lu, C. 2004. Intrinsic images by
entropy minimization. In Proc. of ECCV, vol. 3023, 582-595.
Finlayson, G., Hordley, S., Lu, C., and Drew, M. 2006. On the
removal of shadows from images. IEEE Trans. PAMI 28, 1, 59-68.
Fredembach, C., and Finlayson, G. D. 2005. Hamiltonian path-
based shadow removal. In Proc. of the 16th British Machine Vision
Conference, 502-511.

Geusebroek, J.-M., Van Den Boomgaard, R., Smeulders, A., and
Geerts, H. 2001. Color invariance. IEEE Trans. PAMI 23, 12,
1338-1350.

Gong, H., Cosker, D., Li, C., and Brown, M. 2013. User-aided
single image shadow removal. In Proc. of ICME, 1-6.

Grosse, R., Johnson, M. K., Adelson, E. H., and Freeman, W. T.
2009. Ground-truth dataset and baseline evaluations for intrinsic
image algorithms. In Proc. of ICCV, 2335-2342.

Guo, R., Dai, Q., and Hoiem, D. 2011. Single-image shadow
detection and removal using paired regions. Proc. of CVPR, 2033-
2040.

Hacohen, Y., Shechtman, E., Goldman, D. B., and Lischinski, D.
2011. Non-rigid dense correspondence with applications for image
enhancement. ACM Trans. Graph. 30, 4, 70:1-70:10.

He, K., Sun, J.,, and Tang, X. 2013. Guided image filtering. IEEE
Trans. PAMI 35, 6, 1397-1409.

Hertzmann, A., Jacobs, C. E., Oliver, N., Curless, B., and Salesin,
D. H. 2001. Image analogies. In Proc. SIG-GRAPH, 327-340.

Hu, S.-M., Zhang, F.-L., Wang, M., Martin, R. R., and Wang, J.
2013. Patchnet: A patch-based image representation for interactive
library-driven image editing. ACM Trans. Graph. 32, 6, 196:1-
196:12.

Liu, F., and Gleicher, M. 2008. Texture-consistent shadow removal.
In Proc. of ECCV, 437-450.

Miyazaki, D., Matsushita, Y., and Ikeuchi, K. 2010. Interactive
shadow removal from a single image using hierarchical graph cut.
In Proc. of ACCV, vol. 5994. 234-245,

Mohan, A., Tumblin, J., and Choudhury, P. 2007. Editing soft
shadows in a digital photograph. IEEE Computer Graphics and
Applications 27, 2, 23-31.

Reynolds, M., Peel, L., Weyrich, T., and Brostow, G. J. 2011.
Capturing time-of-flight data with confidence. In Proc. of CVPR,
1377.

Salvador, E., Cavallaro, A., and Ebrahimi, T. 2001. Shadow iden-
tification and classification using invariant color models. In Acous-
tics, Speech, and Signal Processing, IEEE International Conference
on, vol. 3, 1545-1548 vol. 3.

Sanin, A., Sanderson, C., and Lovell, B. C. 2012. Shadow detection:
A survey and comparative evaluation of recent methods. Pattern
Recogn. 45, 4, 1684-1695.

Shechtman, E., Rav-Acha, A., Irani, M., and Seitz, S. 2010. Regen-
erative morphing. In Proc. of CVPR.

Shor, Y., and Lischinski, D. 2008. The shadow meets the mask:
Pyramid-based shadow removal. Computer Graphics Forum 27, 2,
577-586.

Shotton, J., Girshick, R., Fitzgibbon, A., Sharp, T., Cook, M.,
Finocchio, M., Moore, R., Kohli, P., Criminisi, A., Kipman, A., and
Blake, A. 2012. Efficient human pose estimation from single depth
images. IEEE Trans. PAMIL.

Simakov, D. Caspi, Y., Shechtman, E., and Irani, M. 2008. Sum-
marizing visual data using bidirectional similarity. In Proc. of
CVPR.

Wexler, Y., Shechtman, E., and Irani, M. 2007. Space time comple-
tion of video. IEEE Trans. PAMI 29, 3, 463-476.

Wu, T.-P,, and Tang, C.-K. 2005. A bayesian approach for shadow
extraction from a single image. In Tenth IEEE International Con-
ference on Computer Vision, vol. 1, 480-487.

Wu, T.-P, Tang, C.-K., Brown, M. S., and Shum, H.-Y. 2007.
Natural shadow matting. ACM Trans. Graph. 26, 2.

Xu, L., Qi, F,, Jiang, R., Hao, Y., Wu, G., Xu, L., Qi, F,, Jiang, R.,
Hao, Y., and Wu, G., 2006. Shadow detection and removal in real
images: A survey.

* cited by examiner

U.S. Patent Aug. 30, 2016 Sheet 1 of 13 US 9,430,715 B1

Image Processing System 100

Image Manager 102

Shadow Map Manager 104

Image Modifier 106

Data Storage Manager 108

Image Information 110

Patch Information 112

Shadow Information 11

Fig. 1

US 9,430,715 B1

Sheet 2 of 13

Aug. 30, 2016

U.S. Patent

R

002

U.S. Patent Aug. 30, 2016 Sheet 3 of 13 US 9,430,715 B1

304
306
306
304
306

=
jonl
o
-
fe]
™
<t
<9
o
3
S ™~
»
Iy
<t
(o]
o
<)
o
=r
<
{2p]
o
<
o

304

~t
<
o

300

U.S. Patent Aug. 30, 2016 Sheet 4 of 13 US 9,430,715 B1

408

Fig. 4C

408

406

Fig. 4B

402

Fig. 4A

400

US 9,430,715 B1

Sheet 5 of 13

Aug. 30, 2016

U.S. Patent

G ‘614

Jeoy
910 ¥10 <ig a1 AR iR

d

HOISIOAL

v/Sm

U.S. Patent Aug. 30, 2016 Sheet 6 of 13 US 9,430,715 B1

o S
! i S i
q <
S >
[a] i't =4 LL
I Q
S D
™ (T

600
606

U.S. Patent Aug. 30, 2016 Sheet 7 of 13 US 9,430,715 B1

Q S
-E-’ -é
L W 2 L
S L
D S
L Iy
< S
k=) k=
L e

700
706

US 9,430,715 B1

Sheet 8 of 13

Aug. 30, 2016

U.S. Patent

= |

8

bi4

38

g8

b4

b14

v/ 808

v/ 208

as

£

b4

‘b1

v/m_%

US 9,430,715 B1

Sheet 9 of 13

Aug. 30, 2016

U.S. Patent

vig

Zl8

918

b8

US 9,430,715 B1

Sheet 10 of 13

Aug. 30, 2016

U.S. Patent

144

443

08

U.S. Patent Aug. 30,2016 Sheet 11 of 13 US 9,430,715 B1

800

902
Segmeniing An Input Image Into A Plurality Of Grid Cells /

4

904
Determining Nearest Neighbor Patches For Image Patches Of The input image /

h 4

906

Detecting Shadows In The Input Image /
- 908

Segmenting The Detected Shadows Into Shadow Regions /
¥ 910

ldentifying A Cast Shadow In The Input Image

Fig. 9

U.S. Patent Aug. 30,2016 Sheet 12 of 13 US 9,430,715 B1

1000

1002
identifying Shadow Parameters For Pixels In An Input image /
v 1004
Generating A Naive Inversion Of The Input Image /
Y
1006
Removing The Cast Shadow From The Input image _/

Fig. 10

U.S. Patent Aug. 30,2016 Sheet 13 of 13 US 9,430,715 B1

Computing Device

1100
1112 1
P Processor
b " 1102
Memory
1104
Storage
1106

I/O Interface

1108
Communication Interface
T ~
1110
\ 4

US 9,430,715 B1

1

IDENTIFYING AND MODIFYING CAST
SHADOWS IN AN IMAGE

BACKGROUND

1. Technical Field

One or more embodiments relate generally to systems and
methods for detecting and modifying shadows in an image.
More specifically, one or more embodiments relate to sys-
tems and methods of patch-based detection and removal of
cast shadows in a digital image.

2. Background and Relevant Art

Photographs often include cast shadows created by
objects outside the frame of the images. For example, a cast
shadow can be a product of a shadow of the person taking
an image when a light source is behind the person taking the
image. Cast shadows can create unwanted artifacts and/or
color or luminance differences within the image that can
hide or alter an appearance of objects within the frame of the
image, detracting from the visual appeal of the image. In
particular, the period of time just after sunrise or just before
sunset provides soft, diffuse lighting that is often desirable
for taking photographs, but the low altitude of the sun can
produce long shadows that interfere with the image.

Image processing techniques that allow for the removal or
other modification of cast shadows from an image can be
useful in generating an image that simulates what the image
would look like without the shadow. Unfortunately, conven-
tional image processing systems that allow for the removal
of shadows have several drawbacks. For instance, conven-
tional image-processing systems often have difficulty in
identifying cast shadows. In particular, the variations in
texture and other properties of different materials visible
within an image can make it difficult to accurately predict
where shadows are in an image. In addition, conventional
image-processing systems often have difficulty to distin-
guishing between shadows cast by objects that are within the
image and shadows cast by objects that are outside the
image. Due to the ambiguous nature of shadow detection,
many conventional image-processing systems rely on
manual input to initially identify shadows in an image.
Manually identifying the shadows can be tedious, as well as
imprecise or variable based on the perception of the user
providing the input.

Some conventional image-processing systems are profi-
cient at detecting shadows with hard edges using illuminant
invariant features of an image (e.g., hue channel in the HSV
color space). Because shadow boundaries do not exist in
such illuminant invariant features, conventional image-pro-
cessing systems can detect shadows with hard edges. Such
image-processing systems, however, often do not handle
soft shadow boundaries well and can produce visible arti-
facts along the boundaries as a result. Other image-process-
ing systems attempt to overcome deficiencies with handling
soft shadows by estimating shadow density directly using
patch lightness and applying color adjustments for each
penumbra region. While such methods are able to identify
soft shadows in images or shadowed portions that primarily
include the same texture, estimating shadow density in this
manner may produce poor results for images that contain
multiple textures or that include different textures within the
shadowed regions.

Even if a shadow region is previously identified, manually
or otherwise, shadow removal is nonetheless challenging. In
particular, simple color and intensity correction of shadowed
pixels does not usually produce good results in the presence
of soft shadows and/or complex spatially-varying textures.

20

30

40

45

2

As such, many conventional image-processing systems are
not able to produce high quality shadow removal on any-
thing but simple scenes.

These and other disadvantages may exist with respect to
identification and removal of shadows from digital images.

SUMMARY

One or more embodiments provide benefits and/or solve
one or more of the foregoing or other problems in the art
with systems and methods for detecting and removing cast
shadows from an image. In one or more embodiments, the
systems and methods automatically and accurately identify
cast shadows in a digital image. Specially, one or more
embodiments allow for automatic identification of cast shad-
ows even when the shadows are soft, contain multiple
textures, or include different textures within the shadowed
regions. Furthermore, the systems and methods additionally
automatically and accurately remove identified shadows
from digital images. In particular, the systems and methods
allow for removal of shadows despite the presence of soft
shadows and/or complex spatially-varying textures, while
still producing a high quality result.

Regarding shadow identification, the systems and meth-
ods leverage the fact that textures in the shadowed regions
of digital photographs are often repeated in non-shadowed
regions of the digital photographs. Specifically, the system
and methods use a specialized patch correspondence/match
procedure that finds dense matches between shadow and
non-shadow regions. The systems and methods detect shad-
ows in the image based on specific features of the similar
image patches. One or more embodiments segment the
detected shadows into one or more shadow regions based on
luminance variations of the detected shadows. The systems
and methods then identify cast shadows based on the
shadow regions to generate a cast shadow map for the input
image. Detecting shadows based on similar image patches
spatially spread throughout an image allows the systems and
methods to automatically identify cast shadows in the image
without requiring a user to provide manual input.

Regarding shadow removal, the systems and methods also
remove shadows from input images using patch-based syn-
thesis. Specifically, the systems and methods use shadow
parameters identified for each pixel corresponding to the
cast shadow to generate a naive inversion of the input image
by subtracting a bias value from the identified shadow
parameters. Additionally, the systems and methods remove
the cast shadow by synthesizing image patches correspond-
ing to the cast shadow based on non-shadow image patches
from the input image and a plurality of image patches from
the naive inversion of the input image. By synthesizing
pixels corresponding to the identified cast shadow using
pixels from the non-shadowed regions of the input image
and from the naive inversion of the input image, the methods
and systems can provide higher accuracy in color and
luminance properties of the synthesized result.

Additional features and advantages of one or more
embodiments of the present disclosure will be set forth in the
description which follows, and in part will be obvious from
the description, or may be learned by the practice of such
example embodiments. The features and advantages of such
embodiments may be realized and obtained by means of the
instruments and combinations particularly pointed out in the
appended claims. These and other features will become
more fully apparent from the following description and

US 9,430,715 B1

3

appended claims, or may be learned by the practice of such
example embodiments as set forth hereinafter.

BRIEF DESCRIPTION OF THE DRAWINGS

In order to describe the manner in which the above recited
and other advantages and features may be obtained, a more
particular description of embodiments systems and methods
briefly described above will be rendered by reference to
specific embodiments thereof that are illustrated in the
appended drawings. It should be noted that the Figures are
not drawn to scale, and that elements of similar structure or
function are generally represented by like reference numer-
als for illustrative purposes throughout the Figures. Under-
standing that these drawings depict only typical embodi-
ments and are not therefore to be considered to be limiting
of'its scope, the systems and methods will be described and
explained with additional specificity and detail through the
use of the accompanying drawings in which:

FIG. 1 illustrates a schematic overview of an image
processing system in accordance with one or more embodi-
ments;

FIG. 2 illustrates a set of training images for training
algorithms in shadow detection and removal processes in
accordance with one or more embodiments;

FIG. 3 illustrates nearest neighbor patches for a selected
image patch in an input image in accordance with one or
more embodiments;

FIGS. 4A-4C illustrate a plurality of versions of a training
image in accordance with one or more embodiments;

FIG. 5 illustrates a graph diagram of precision and recall
curves corresponding to a patch matching algorithm in
accordance with one or more embodiments;

FIGS. 6A-6F illustrate embodiments of images in asso-
ciation with a shadow detection process in accordance with
one or more embodiments;

FIGS. 7A-7F illustrate embodiments of images in asso-
ciation with a patch-based synthesis process in accordance
with one or more embodiments;

FIGS. 8A-80 illustrate embodiments of input images and
modified images derived from a patch-based synthesis pro-
cess in accordance with one or more embodiments;

FIG. 9 illustrates a flowchart of a series of acts in a
method of identifying cast shadows in an image in accor-
dance with one or more embodiments;

FIG. 10 illustrates a flowchart of a series of acts in a
method of removing cast shadows from an image in accor-
dance with one or more embodiments; and

FIG. 11 illustrates a block diagram of an exemplary
computing device in accordance with one or more embodi-
ments.

DETAILED DESCRIPTION

One or more embodiments of the present disclosure
include an image processing system that detects shadows in
digital images without manual user input. The image pro-
cessing system can also remove shadows from digital
images to produce quality images. In particular, the image
processing system can detect shadows in an input image
based on identified visual similarities between shadowed
and non-shadowed image patches within the input image.
One or more embodiments of the image processing system
also use the detected shadows to identify cast shadows
within the image. Additionally, one or more embodiments of
the image processing system remove or modify identified
cast shadows from the input image. Specifically, the image

20

25

30

40

45

4

processing system synthesizes shadowed image patches in
the input image based on image patches in the input image
and image patches from a rough estimate of the image
without the cast shadow.

In one or more embodiments, the image processing sys-
tem uses a patch-matching algorithm to identify correspon-
dences (e.g., similarities of certain visual properties)
between shadowed and non-shadowed image patches of an
input image. Specifically, the image processing system can
use a patch-matching algorithm that identifies similar image
patches that are spatially spread throughout the input image.
By identifying spatially spread image patch correspon-
dences throughout the input image, the image processing
system can increase the likelihood of correctly distinguish-
ing shadowed and non-shadowed image patches of the same
texture. After identifying pairs of similar image patches, the
image processing system can generate a shadow map that
roughly divides the image into shadowed regions and non-
shadowed regions. In particular, the image processing sys-
tem can compare each patch with the brightest matching
patch. The image processing system uses a luminance ratio
between these patches as a shadow density, which in turn
produces a naive shadow map. The image processing system
can then refine the naive shadow map to produce an all-
shadow map that shows the shadow regions in the image.

Additionally, the image processing system can identify
cast shadows from the all-shadow map. In particular, the
image processing system can identify which shadows of the
detected shadows of the input image are cast shadows. For
example, the image processing system can identify cast
shadows from the detected shadows by predicting cast
shadows from the detected shadows based on probabilities
assigned to separate shadow regions. The image processing
system can also determine that adjacent shadow regions are
part of the same cast shadow based on certain visual
properties of the shadow regions. Optionally, the image
processing system and iteratively repeat the shadow identi-
fication process to identify two layers of shadows or mul-
tiple shadows.

According to one or more embodiments, the image pro-
cessing system can modify/remove cast shadows from an
input image. For example, the image processing system can
remove cast shadows from the input image to create a
synthesized image that estimates what the input image
would be without the cast shadows. To illustrate, the image
processing system can identify a plurality of image patches
corresponding to a cast shadow and modify one or more
visual properties of the identified image patches. The image
processing system can thus create a synthesized image from
the input image with a plurality of modified image patches
to simulate the input image without the cast shadow.

In one or more embodiments, the image processing sys-
tem can synthesize image patches corresponding to the cast
shadows to create a final synthesis result in a process that is
guided by a naive inversion of the input image (e.g., a rough
estimate of the input image). Specifically, the image pro-
cessing system can generate an initial synthesis result that
synthesizes the shadowed image patches using similar non-
shadowed image patches. Further, the image processing
system can also generate the naive inversion of the input
image by modifying each pixel independently based on
properties of the identified cast shadow. The image process-
ing system can use the initial synthesis result and the naive
inversion to create a final synthesis result that provides a
more accurate estimate of the input image without the cast
shadows than either the initial synthesis result or the naive
inversion alone. Optionally, the image processing system

US 9,430,715 B1

5

and iteratively repeat the shadow identification removal to
remove two layers of shadows or multiple shadows.

As described in greater detail below with regard to
identifying shadows and cast shadows in an input image, the
image processing system can distinguish between shadowed
and non-shadowed areas in an image based on the content of
the image. Furthermore, the image processing system can
distinguish between shadows created by objects within the
image and shadows cast by objects located outside the image
frame, as well as distinguish between shadows in a multi-
layered shadow region. Thus, the image processing system
can accurately identify cast shadows for removal from the
image without requiring a user to manually identify the
shadows, which can be a tedious and inaccurate process.

More specifically, the image processing system can deter-
mine, for image patches in the input image, nearest neighbor
patches that have one or more similar visual features to the
corresponding image patch, such as texture. Specifically, the
image processing system can identify nearest neighbor
patches by segmenting the input image into a plurality of
grid cells and selecting one or more nearest neighbor patches
from some or all of the grids cell using a grid-based
generalized patch match (GGPM) algorithm. Because the
nearest neighbor patches are spatially spread across the grid
cells, the nearest neighbor patches can include both shad-
owed and non-shadowed image patches. Additionally, by
constraining the selection of nearest neighbor patches for an
image patch to be spatially spread across the plurality of grid
cells, the image processing system can increase the prob-
ability of finding shadow-invariant correspondences for
each image patch.

Once the corresponding image patches are identified, the
image processing system can extract feature vectors (e.g.,
features of the selected color space, matching cost, and
spatial offsets) of each image patch and the corresponding
nearest neighbor patches to identify shadow parameters for
detecting shadows in the image. In particular, the image
processing system can create a concatenated or combined
feature vector that includes ranked feature vectors for
matching pairs associated with an image patch and the
corresponding nearest neighbor patches. By applying a
regression algorithm, such as a regression random forest
(RRF) algorithm, to the concatenated feature vectors, the
image processing system can estimate shadow parameters
for creating a shadow map that defines shadows within the
image.

According to one or more embodiments, the image pro-
cessing system can distinguish between detected shadows to
determine which shadows correspond to objects outside the
image for removal or modification. Specifically, the image
processing system can segment the detected shadows into
different shadow regions based on luminance variations of
the shadows in the shadow map. The image processing
system can identify cast shadows by determining that a
shadow region is or belongs to a cast shadow using a trained
decision tree that determines the probability that each
shadow region is the cast shadow and storing the results in
a cast shadow map.

Additionally, the image processing system can determine
that darker shadow regions adjacent to an identified shadow
region are part of the cast shadow if the adjacent regions are
darker than the identified region. For example, shadow
regions adjacent to the identified region that have luminance
gain values lower than the luminance gain value of the
identified region may be shadows on a different texture, but
are still part of the cast shadow. Thus, the image processing

25

40

45

55

6

system can identify the cast shadow even if the cast shadow
covers multiple objects and backgrounds in the image.

With regard to removing or otherwise modifying identi-
fied cast shadows in an input image, the image processing
system identifies shadow parameters associated with previ-
ously identified cast shadows in the input image and gen-
erates a naive inversion of the input image based on the
identified shadow parameters. The image processing system
uses the shadow parameters to set a luminance of pixels
corresponding to the cast shadow to a luminance threshold
for the naive inversion of the image. Additionally, the image
processing system can remove the cast shadow from the
image by synthesizing the pixels corresponding to the cast
shadow based on pixels in the input image. The image
processing system can also use the naive inversion of the
image to correct the resulting image for areas that did not
properly synthesize.

More specifically, once the cast shadow is identified, one
or more embodiments of the image processing system can
generate a naive inversion of the image based on the shadow
parameters of the image. For example, the image processing
system can identify the shadow parameters for the pixels
corresponding to the cast shadow and set color space param-
eters of each pixel corresponding to the cast shadow at a
corresponding parameter threshold based on the shadow
parameters. Specifically, the image processing system can
modify one or more color space parameters (e.g., gain and/or
bias values) by reducing the corresponding color space
parameters in accordance with the shadow parameters. Thus,
the image processing system can first generate a rough
estimate of the image without the cast shadow by creating
the naive inversion.

The image processing system can then synthesize the
image patches of the cast shadow based on an initial
synthesis result and the naive inversion of the image. Spe-
cifically, the image processing system can determine a
synthesis confidence for each image pixel in the shadow of
the initial synthesis result. For pixels with a high confidence
value, the image processing system can use the pixels from
the initial synthesis result to overwrite the corresponding
pixels in the naive inversion of the image. For pixels with a
low confidence value, the image processing system can use
the corresponding pixels in the naive inversion of the image
by modifying the pixels in the naive inversion based on
similar pixels that have a high confidence value. Thus, the
image processing system creates a fusion of the initial
synthesis result and the naive inversion having a higher
accuracy in estimating pixel properties without the cast
shadow than either the initial synthesis result or the naive
inversion alone.

As used herein, the term “cast shadow”” refers to a shadow
cast in the image by an object or figure onto another object
or figure (rather than a “self shadow,” which includes a
shadow resulting on the object that caused the shadow). For
example, the object or figure can be a foreground object at
least partially within a border or frame of the image, or an
object completely outside the border or frame of the image.
To illustrate, if a light source is located at least partially
behind a person capturing an image, the light source may
create a cast shadow of the person that at least partially
covers one or more objects or background elements of the
image. The image processing system described herein may
detect and remove, shift, rotate, replace, or otherwise adjust
an appearance of cast shadows in the image from objects
within and/or outside the image.

As used herein, the term “shadow parameter” refers to a
parameter that describes shadow aspects of an image patch.

US 9,430,715 B1

7

For example, shadow parameters for an image patch may
include one or more values of a selected color space (e.g.,
gain or bias values) for the image, as well as information for
the corresponding image patch. The image processing sys-
tem can use the shadow parameters of the image patches
from the image to identify and distinguish shadows in the
image.

FIG. 1 illustrates a schematic overview of one embodi-
ment of an image processing system 100. The image pro-
cessing system 100 may include, but is not limited to, an
image manager 102, a shadow map manager 104, an image
modifier 106, and a data storage manager 108. Each of the
components of the image processing system 100 can be in
communication with one another using any suitable com-
munication technologies. It will be recognized that although
the components of the image processing system 100 are
shown to be separate in FIG. 1, any of components may be
combined into fewer components, such as into a single
component, or divided into more components as may serve
a particular implementation.

The components can comprise software, hardware, or
both. For example, the components can comprise one or
more instructions stored on a computer-readable storage
medium and executable by processors of one or more
computing devices (e.g., client devices and/or server
devices). When executed by the one or more processors, the
computer-executable instructions of the image processing
system 100 can cause the computing device(s) to perform
the image enhancement methods described herein. Alterna-
tively, the components can comprise hardware, such as a
special purpose processing device to perform a certain
function or group of functions. Additionally or alternatively,
the components can comprise a combination of computer-
executable instructions and hardware.

Furthermore, the components of the image processing
system 100 may, for example, be implemented as a stand-
alone application, as a module of an application, as a plug-in
for applications including image processing applications, as
a library function or functions that may be called by other
applications such as image processing applications, and/or
as a cloud-computing model. Thus, the components of the
image processing system 100 may be implemented as a
stand-alone application, such as a desktop computer appli-
cation or a mobile device application. Alternatively or
additionally, the components of the image processing system
100 may be implemented in any image processing applica-
tion, including but not limited to ADOBE PHOTOSHOP,
ADOBE PHOTOSHOP ELEMENTS, and ADOBE ILLUS-
TRATOR. “ADOBE”, “PHOTOSHOP”, “ELEMENTS”,
and “ILLUSTRATOR?” are registered trademarks of Adobe
Systems Incorporated in the United States and/or other
countries.

As mentioned above, the image processing system 100
can include an image manager 102. In one or more embodi-
ments, the image manager 102 facilitates management of
images within the image processing system 100. For
example, the image manager 102 can receive an image input
for performing a particular shadow detection or shadow
modification operation. To illustrate, the image manager 102
can receive an image as part of an input from a user to detect
a shadow and/or to remove a shadow from the image.

Additionally, the image manager 102 can determine a
number of image patches for the image. As used herein, the
term “image patch” refers to a patch or group of pixels
having a specific size, shape, and location corresponding to
an image. For example, image patches can have a predeter-

10

15

20

25

30

35

40

45

50

55

60

65

8

mined pixel width/height (e.g., 5x5) and a location for each
image patch can be defined based on one or more center
pixels.

Determining a number of image patches can include
determining a number of pixels in the image. In some
instances, each pixel can have a corresponding image patch
with the pixel at or near the center of the image patch such
that the number of image patches is equal to the number of
pixels in the image. Thus, image patches corresponding to
adjacent image pixels overlap can each other.

The image processing system 100 can also include a
shadow map manager 104 to identify shadows within the
image. In one embodiment, the shadow map manager 104 is
able to first identify shadows within the image based on the
determined image patches. For example, the shadow map
manager 104 can segment the detected shadows into shadow
regions for use in identifying one or more cast shadows in
the image. Specifically, the shadow map manager 104 can
determine that one or more shadow regions correspond to a
cast shadow. The shadow map manager 104 can generate a
cast shadow map from the identified cast shadow(s) that
defines the cast shadows in the image.

The image processing system 100 can also include an
image modifier 106 to modify an image by removing and/or
otherwise making changes to identified cast shadows in the
image. For example, the image modifier 106 can modify
visual properties of pixels corresponding to the identified
cast shadows to make the image appear as if the identified
cast shadows were not present in the image. Alternatively,
the image modifier 106 can modify the cast shadows in other
visible ways by changing the visual properties of shadow
and/or non-shadow pixels within the image.

Modifications to the image may involve the creation of
one or more derivative images based on the input image for
use in various processing steps. For example, the image
modifier 106 can create a naive inversion and/or a synthe-
sized version of the image for use in creating a final image
with the desired modifications. The image modifier 106 can
communicate with the image manager 102 and the data
storage manager 108 for receiving and storing the final
image, as well as any intermediate images for generating the
final image.

The image processing system 100 can also include a data
storage manager 108 to facilitate storage of information for
the shadow detection and removal processes. In particular,
the data storage manager 108 can store information used by
one or more of the components in the image processing
system 100 to facilitate the performance of various opera-
tions associated with image enhancement. In one embodi-
ment as shown in FIG. 1, the data storage manager 108
maintains image information 110, patch information 112,
and shadow information 114. The data storage manager 108
may also store any additional or alternative information
corresponding to the operation of the image processing
system 100. The data storage manager 108 can maintain
additional or alternative data as may serve a particular
implementation. The data storage manager 108 may com-
municate with any component within the image processing
system 100 to obtain information for storing, managing, and
enhancing images associated with the image processing
system 100. In one embodiment, the data storage manager
108 includes one or more servers on which images or other
information is stored. For example, the data storage manger
may include a distributed storage environment.

In some instances, the image information 110 can include
data corresponding to an input image. In particular, the
image information 110 may allow the shadow map manager

US 9,430,715 B1

9

104 and the image modifier 106 to obtain image data
necessary for performing shadow detection and removal/
modification. For example, the image information 110 may
include an image, a source or a location of the image, a size
of the image, a number of pixels in the image, content of
each of the pixels, colors used in the image, and/or other
information corresponding to the image.

Additionally, the image information 110 can include data
corresponding to images created during one or more of the
operations of shadow detection/removal. Specifically, the
shadow detection/removal process may include generating
one or more images to compare to or combine with the input
image or another image derived from the input image. For
example, the image information 110 can include data for a
naive inversion of the input image, an initial synthesis result,
and/or a final synthesis result.

In one or more embodiments, the patch information 112
can include data corresponding to image patches in the
image. In particular, the patch information 112 can provide
information for each of the image patches in the image. For
example, the patch information 112 may include a location
of one or more central pixels corresponding to each image
patch, a size of each image patch, and/or other information
corresponding to the image patches.

One or more embodiments of the data storage manager
108 may also maintain shadow information 114. In particu-
lar, the data storage manager 108 may store shadow param-
eters that the shadow map manager 104 has extracted from
the image patches in the image. The shadow parameters
allow the shadow map manager 104 to define a shadow map
including the shadows within the image. The shadow param-
eters also allow the shadow map manager 104 to further
define a cast shadow map including one or more cast
shadows within the image.

Additionally, the shadow parameters can include one or
more parameters that describe color information for the
image patches, as previously mentioned. For example, the
shadow information 114 can include color information for
the pixels based on a selected color space for the shadow
detection and removal processes. To illustrate, the shadow
information 114 can include color space parameters in the
CIELab color space, as described in more detail below, for
each pixel and/or each image patch in the image.

Although the data storage manager 108 in FIG. 1 is
described to include the image information 110, the patch
information 112, and the shadow information 114, the data
storage manager 108 can include additional or alternative
information related to the image processing system 100, as
previously mentioned. Additionally, the data storage man-
ager 108 can include information for other types of systems
and processes. For example, the data storage manager 108
can manage or communicate with a distributed storage space
configured to interface with one or more devices or systems
in addition to the image processing system 100, allowing the
different devices/systems to interact with one another.

As previously mentioned, the image processing system
100 can identitfy dense correspondence between matching
shadowed and non-shadowed pixels to estimate local
shadow parameters (including luminance differences caused
by the shadows) and allow for automatic shadow detection.
In one or more embodiments, the image processing system
100 can compute such correspondences at a patch level
rather than a pixel level, thereby, allowing the image pro-
cessing system 100 to match texture in shadowed and
non-shadowed regions. Additionally, as described in greater
detail below, the image processing system 100 can use a
generalized patch match (GPM) for finding such correspon-

10

15

20

25

30

35

40

45

50

55

60

65

10

dences to help ensure that the correspondences are invariant
to geometric variations such as rotations and scales and
photometric differences caused by illumination. To alleviate
the convergence problem of the GPM and improve matching
accuracy, the image processing system 100 can bootstrap the
GPM with parameters of a shadow model that are learned
from a training dataset.

In one or more embodiments, the shadow model can
describe an appearance difference between a shadowed
image patch and an estimated non-shadowed version of the
shadowed image patch. In particular, the color change
caused by shadowing of a pixel can be expressed as:

L’=G,L+B,

where 1, and 1, are shadowed and non-shadowed color
vectors at p, G, 1s a diagonal matrix where the i diagonal
element is the gain of the i” color channel, and B, is a color
bias vector. Because shadow maps including shadows iden-
tified in images are usually smooth, one or more embodi-
ments of the image processing system 100 can assume that
the shadow map is constant within a small image patch (e.g.,
5 pixels by 5 pixels). Additionally, image patches of the
same texture in a single image may also be assumed to have
the same appearance. Such assumptions allow for the sub-
stitution of a pixel q with a patch P in the previous equation
as:

R (€)=, (c)*Ry(e)+D,(C)

where c is the color channel index, R, and R, are shadowed
and non-shadowed patch color matrices, and g, and b, are
gain and bias values, respectively.

According to one or more embodiments, aspects of the
shadow model described above can include: (1) the color
space to be used for the model; (2) whether gain value(s)
and/or bias value(s) are used for each channel of the color
space; and (3) ranges for the gain value(s) and bias value(s).
To identity these aspects of the shadow model, the image
processing system 100 can use a set of training images to
train the shadow model. The set of training images can
include a plurality of image pairs, where each pair includes
two images of the same scene—a first image with a cast
shadow to be removed and a second image without the cast
shadow. The training images can also include images with
different luminance conditions (e.g., indoor and outdoor
images with different lighting) to improve the diversity of
the training dataset. Thus, the training images can allow the
image processing system 100 to train the shadow model to
select the color space and gain/bias value(s) to accurately
detect shadows in an input image.

Referring to FIG. 2, same sample image pairs 200 of a set
of training images are illustrated. As shown, the set of
training mages can include image pairs of different indoor
and outdoor scenes captured in different lighting conditions
(in this case four different conditions). Each image pair
includes a shadowed image 202 and a non-shadowed image
204 of the same scene as ground truth, captured in quick
succession with the same camera, viewpoint, and illumina-
tion settings. FIG. 2 illustrates 20 image pairs from a set of
90 image pairs.

Table 1 illustrates approximation errors of different
shadow model settings in different color spaces for the
training images 200 of FIG. 2. Specifically, the different
color spaces include log-chromaticity, HLS, RGB, and
CIELab color spaces. Each color space has a variety of
gain/bias settings in different channels for the color spaces,
such as gain only in the L channel in the HLS color space
(i.e., model 2 in Table 1), or gain in the L. channel and bias

US 9,430,715 B1

11
in the a, b channels of the CIELab color space (i.e., model
9 1in Table 1). The “No.” column is the number or parameters
in the model.

TABLE 1

Space Parameters No. Error

1 Log-chr N/A N/A 0.081
2 HLS Gain(L) 1 0.091
3 Gain(L), Bias(L) 2 0.087
4 Gain(L), Bias(H/L/S) 3 0.036
5 RGB Gain(R/G/B) 3 0.029
6 Gain(R/G/B), Bias(R/G/B) 6 0.028
7 CIELab Gain(L) 1 0.095
8 Gain(L), Bias(L) 2 0.088
9 Gain(L), Bias(a/b) 3 0.041
10 Gain(L), Bias(L/a/b) 4 0.030

To determine a color space for the shadow model, the
image processing system 100 extracts 5x5 image patch pairs
of shadowed and non-shadowed image patches in the train-
ing images. The image processing system 100 also deter-
mines which gain/bias values that have the lowest matching
error for the corresponding models, shown in Table 1. If both
gain and bias values are enabled for a channel, the image
processing system 100 can compute the gain/bias values by
matching the mean and standard variation of the shadowed/
non-shadowed image patch pairs.

As illustrated in Table 1, the image processing system 100
achieves approximation errors with models 4, 5, 6, 9, and 10
that are significantly lower than the other models. Table 2
shows the computed ranges of the corresponding parameters
that result in the lowest matching error for models 4, 5, 9,
and 10 (model 6 is excluded because model 6 has a greater
number of parameters).

TABLE 2

Param. Range
4 Bias(H) (-0.54, 0.03)
Gain(L) (0.46, 1.52)
Bias(L) (0.05, 0.33)
Bias(S) (-0.34, 0.61)
5 Gain(R) (0.24, 0.82)
Gain(G) (0.41, 0.81)
Gain(B) (0.41, 0.82)
10 Gain(L) (0.49, 1.64)
Bias(L) (0.06, 0.35)
Bias(a) (=0.02, 0.04)
Bias(b) (-0.02, 0.07)
9 Gain(L) (0.43, 0.81)
Bias(a) (=0.02, 0.04)
Bias(b) (-0.02, 0.07)

The illustrated parameter ranges cover 80% of the pixels
in the set of training images 200. Specifically, the image
processing system 100 accumulates ground truth values
from the set of training images to form a histogram and
removes the lowest 10% values and the highest 10% values.
Alternatively, the image processing system 100 may select
parameter ranges that cover other amounts of the pixels in
the set of training images, as described in more detail below
with regard to the training of the GGPM algorithm.

As shown, model 9 (corresponding to the CIELab color
space with a luminance gain value and a/b bias values) has
a narrow range of parameter values relative to the other
models while also having a low matching error. Thus, model
9 can be useful in the GGPM algorithm described herein to
reduce the likelihood of false positive matches. The 3-chan-
nel parameter matrix, also referred to herein as a shadow

10

15

20

25

30

35

40

45

50

55

60

65

12

map, corresponding to model 9 can be represented as
S=(g’,b*b”). Although the image processing system 100
described herein uses the CIELab color space with a lumi-
nance gain value and a/b bias values, the image processing
system 100 may use a different color space with different
parameters, such as one of the other models shown in Table
1.

After selecting a color space and the appropriate param-
eters for identifying shadows in an input image, the image
processing system 100 can generate the shadow map using
patch-based processes. In one or more embodiments, the
image processing system 100 can generate an all shadow
map, S,, which includes detected shadows in the input image
(or in a selected portion of the input image, if guided by user
input), including cast shadows from objects outside the
image, cast shadows from within the image, shadows caused
by inter-object occlusion, etc. As briefly mentioned previ-
ously, generating the all shadow map, S,, can include
applying a GGPM algorithm to image patches in the input
image to identify correspondences between patches in the
image. Furthermore, generating the all shadow map, S,, can
include training and applying a Regression Random Forest
(RRF) algorithm to predict S, from the identified correspon-
dences.

In one or more embodiments, the image processing sys-
tem 100 can use patch-based processes to all identified
image patches in the image. Alternatively, the image pro-
cessing system 100 can apply the patch-based processes to
a subset of image patches in the image. For example, the
image processing system 100 may allow a user to manually
select a portion of an image containing shadows to limit the
number of total image patches and reduce processing time.

When applying the GGPM algorithm to an image patch in
the input image, the image processing system 100 finds the
k-nearest neighbor patches within the input image. The
k-nearest neighbor patches have similar visual characteris-
tics to the image patch, particularly in relation to the
parameters in the chosen color space. For example, the
nearest neighbor patches can include one or more similar
color space parameters to the selected image patch. To
illustrate, FIG. 3 illustrates an input image 300 with a
selected image patch 302 and a plurality of nearest neighbor
patches 304 for the selected image patch 302.

As shown in FIG. 3, the GGPM algorithm constrains the
nearest neighbor patches 304 for a selected image patch 302
to be spatially spread within the image. In particular, rather
than finding the most similar matches based on a patch
distance metric such as sum of squared differences, the
GGPM attempts to find both shadowed and non-shadowed
matching pairs of image patches. By using a grid-based
generalized patch-matching algorithm, the image processing
system 100 can increase the probability of finding shadow-
invariant matches over a non-grid-based algorithm.

For example, to constrain the nearest neighbor patches
304 to be spatially spread within the image, the image
processing system 100 can segment the input image 300 into
a plurality of grid cells 306. In one or more embodiments,
the image processing system 100 can segment the input
image 1 300 into K grid cell 306 and apply a generalized
patch-matching (GPM) algorithm to each grid cell 1, 306
independently to find a single nearest neighbor patch 304 in
each grid cell 306. As a result, the image processing system
100 obtains K nearest neighbor patches P/ (P,%cl,) for each
image patch P, in the input image 1 300, with the K nearest
neighbor patches 304 being spatially distributed across the
image to cover appearance variations of the same texture.

US 9,430,715 B1

13

According to one or more embodiments, the image pro-
cessing system 100 can automatically segment the image
into grid cells 306 of equal sizes. For example, the image
processing system 100 can segment the image of FIG. 3 into
a 4x3 grid (i.e., K=12). Alternatively, the image processing
system 100 can segment the image into grid cells 306 of
varying sizes. Additionally, when segmenting the image into
grid cells 306, the image processing system 100 can down-
sample the image to a smaller resolution if the image is
above a certain resolution. For example, the image process-
ing system 100 can down-sample the image to 600x450
pixels.

Because the GGPM algorithm allows the image process-
ing system 100 to spatially distribute the nearest neighbor
patches 304, material ambiguities at the image patch level
may produce correspondences of varying qualities. Specifi-
cally, the correspondences may fall into three categories: (1)
good/desired matches, (2) bad matches, and (3) wrong
matches. The image processing system 100 can tune param-
eters of the GGPM algorithm to increase the number of
desired matches and to reduce the number of bad matches
and wrong matches.

In one or more embodiments, a desired match includes a
shadowed image patch (e.g., the selected image patch 302)
that is matched to a non-shadowed patch (e.g., one of the
nearest neighbor patches 304) of the same texture, which
may be determined by comparing a matching cost of the
patch pair that meets (i.e., is less than) a cost threshold 6. A
bad match includes a patch pair with a matching cost that
does not meet (i.e., is greater than) the cost threshold 0,
indicating that the selected image patch 302 and the nearest
neighbor patch 304 corresponding to the bad match may not
have the same texture. A wrong match includes a patch pair
with a matching cost that meets the cost threshold 0, but is
still not a desired match. An example of a wrong match may
be two shadowed image patches in different grid cells 306
that do not have the same texture.

To improve the performance of the GGPM algorithm, one
or more embodiments of the image processing system 100
may apply the GGPM algorithm to a set of training images,
such as the set of training images 200 in FIG. 2, with
different parameter range settings. In particular, a user (e.g.,
a developer) can manually separate each of the training
images into ground truth shadow/non-shadow components
and coherent texture regions. FIGS. 4A-4C illustrate a
training image 400, a shadow image 402 with manually
labeled shadows of the training image, and a texture image
404 with manually labeled textures of the training image
406.

According to one or more embodiments, the image pro-
cessing system 100 can receive a user input to manually
label one or more shadows for the training image 400 of
FIG. 4A. Specifically, the user can manually mark shadowed
regions 406 to create the shadow image 402 by selecting the
corresponding regions in the training image 400 with an
input device. Upon manual identification of the shadowed
regions 406, the image processing system 100 can store the
manually labeled shadowed regions 406 in the shadow
image 402, as shown in FIG. 4B. The user can similarly
perform manual identification of shadows for a plurality of
training images to store in individual shadow maps. Addi-
tionally, or alternatively, the user can label non-shadowed
regions in the training image.

FIG. 4C illustrates manually labeled textures in a texture
image 404 for the training image 400. Specifically, the user
can provide an input to manually identify different coherent/
visible texture regions 408. For example, the user can

20

25

40

45

50

14

manually label the texture regions 408 corresponding to
different objects/backgrounds or portions of objects/back-
grounds within a single image. After receiving the input
from the user, the image processing system 100 can store the
manually labeled texture regions 408 in the texture image
404. Similarly, the image processing system 100 can store
manually labeled texture regions 408 for each of the training
images in individual texture maps. In one or more embodi-
ments, at least part of the manual labeling of shadows and
textures can be automated, and the user may fine-tune the
resulting shadow images and texture images.

In one or more embodiments, the image processing sys-
tem 100 can apply the GGPM to the manually generated
shadow and texture images for the set of training images to
calculate matching recall and precision of the GGPM algo-
rithm. In one or more embodiments, the precision (i.e., the
positive predictive value of the GGPM algorithm) is repre-
sented as:

[Ma(O)l

Precision(6) = m

and the recall (i.e., the sensitivity of the GGPM algorithm)
is represented as:

[Ma(O)l

Recall(9) = m

where M, represents bad matches, M, represents desired
matches, M,, represents wrong matches, 0 is a threshold
based on a specific gain/bias range setting, P, ;... is the set
of all shadow patches in the source (training) images, and ||
denotes the cardinality of a set.

FIG. 5 illustrates a graph 500 showing precision and recall
curves for different range settings for the gain and bias
settings of the GGPM algorithm on the set of training images
200 corresponding to FIG. 2. Specifically, the candidate
range settings are extracted from the ground truth param-
eters in the set of training images 200 to cover 90%, 80%,
70%, 60%, 50%, and 10% of the shadowed pixels in the set
of training images 200. According to one or more embodi-
ments, the range setting corresponding to 70% pixel cover-
age with a luminance gain range of (0.46, 0.76), a bias(a)
range of (-0.01, 0.03), and a bias(b) range of (-0.01, 0.13)
provides a balance of precision and recall to be used with the
GGPM described herein. In other implementations, such as
with another color space or with other parameters, the image
processing system 100 can use different parameter ranges
corresponding to a different pixel coverage for an input
image.

In one or more embodiments, the GGPM algorithm may
include parameters in addition to the gain and bias values for
the CIELab color space. For example, the GGPM algorithm
may use scaling, rotation, and mirroring parameters of the
input image to identify nearest neighbor patches for each
image patch in the input image. In one example, the scaling
and rotation may be set to (0.67, 1.5) and (185°, —185°),
respectively. Additionally, for each grid cell, the image
processing system 100 may apply the GGPM algorithm in a
coarse-to-fine manner by using a Gaussian pyramid with an
inter-scale down-sampling ratio of 0.8, and a height of the
coarsest layer of at least 25 pixels. In other embodiments, the

US 9,430,715 B1

15

image processing system 100 may use other settings for the
GGPM algorithm based on the selected color space or
desired results.

As described above, the image processing system 100
may discover patch correspondences that allow the image
processing system 100 to accurately identify desired
matches between image patches and the corresponding
nearest neighbor patches. Increasing the number of desired
matches for patch correspondences increases the accuracy of
shadow detection. Thus, training the GGPM algorithm and
selecting the color space model using one or more sets of
training images can improve the accuracy of the shadow
detection process. Once the color space model and the
GGPM algorithm are trained, a user may be able to detect
shadows in an input image without requiring the user to
provide additional input. Additionally, the image processing
system 100 can further remove or otherwise modify shad-
ows in the input image without further user input, as
described in more detail below.

Identifying the All Shadow Map

By applying the GGPM algorithm to the grid cells of the
input image, the image processing system 100 can learn
shadow parameters based on features extracted from nearest
neighbor patches of each image patch in the input image.
Specifically, the GGPM algorithm obtains the K nearest
neighbor patches P/ (P/el,), and the image processing
system 100 obtains shadow parameters S, (P,) from
extracted features of the nearest neighbor patches. For
example, for each matching patch pair (P,P%), the GGPM
algorithm can compute shadow parameters including a
matching gain and/or bias and a matching cost. Additionally,
the GGPM algorithm can determine spatial offsets for the
image pairs.

With the aforementioned parameters, the GGPM algo-
rithm can generate a 6-dimension feature vector for each
matching pair, represented as:

F(p, Py=(gh b b8, cost,Ax,Ay)

where Ax, Ay are the spatial offsets from P to P*. The image
processing system 100 can generate a final feature vector of
P (as referred to herein as a concatenated or combined
feature vector) containing all of the feature vectors of the
corresponding nearest neighbor patches for a given image
patch. For example, the image processing system 100 can
generate the final feature vector by concatenating the feature
vectors of the corresponding K nearest neighbor patches, the
final feature vector represented as F(P)={F(P,PX)}, and hav-
ing a dimension based on the number of nearest neighbor
patches (i.e., 6*K).

In one or more embodiments, the image processing sys-
tem 100 can organize the feature vectors of the correspond-
ing nearest neighbor patches in the final feature vector. In
particular, because the nearest neighbor patches for each
image patch can have an arbitrary distribution in the grid
cells with respect to the quality of the nearest neighbor
patches (e.g., bad, desired, or wrong matches), the image
processing system 100 may arrange the feature vectors in an
order other than based on a grid index. Rather, in one or
more embodiments, the image processing system 100 can
arrange the feature vectors of the nearest neighbor patches in
the concatenated feature vector based on a ranking that the
image processing system 100 determines for each nearest
neighbor patch. To illustrate, the image processing system
100 can rank the feature vectors for the nearest neighbor
patches in a descending order of their luminance gain
component, g-, such that well-lit nearest neighbor patches
(likely to be non-shadowed image patches) are positioned

20

30

40

45

50

16

before darker patches (likely to be shadowed image patches)
in the concatenated feature vector. Thus, the image process-
ing system 100 can organize the feature vectors in an order
that provides accuracy and consistency for identifying the
shadows in the input image.

According to one or more embodiments, after determin-
ing the concatenated feature vector for each image patch in
the pixel, the image processing system 100 can perform a
naive shadow prediction, S,, based on the concatenated
feature vector. Specifically, the image processing system 100
can select the patch pair with the smallest luminance gain
value (i.e., the brightest patch) and a small matching error as
a desired match for a shadowed source image patch. Based
on the luminance ratios of identified patch pairs, the image
processing system 100 can identify a shadow density for the
image patches. To illustrate, the image processing system
100 can select the first patch pair in the concatenated feature
vector to find the shadow parameters of the image patch P
by computing:

% (cost(P, P*)y <)
TP P

The shadow parameters for the naive shadow prediction,
S,,. at p, the center pixel of image patch P are represented as:

Salp)=(g" b, bP)EBPY)

The naive shadow prediction, S,, can produce a rough
shadow map, but the shadow map is sensitive to the cost
threshold . Additionally, the naive estimation, S,, uses only
one nearest neighbor patch while ignoring the rest of the
nearest neighbor patches and their spatial distributions,
which may result in sensitivity to matching errors. Thus, the
image processing system 100 may use additional or alter-
native methods of estimating the shadow parameters from
the nearest neighbor patches, as described below.

In one or more embodiments, the image processing sys-
tem 100 may use a regression algorithm to estimate the
shadow parameters for each image patch in the input image.
Specifically, the image processing system 100 can use a
trained RRF algorithm to estimate the shadow parameters
based on all of the feature vectors in the concatenated feature
vectors. For example, the image processing system 100 can
first train the RRF algorithm and then apply the trained RRF
algorithm to the results of the image patches and corre-
sponding nearest neighbor patches to obtain the all shadow
map S,. The RRF algorithm can produce a smaller average
per-pixel error than the naive shadow prediction.

To illustrate, the image processing system 100 can train
the RRF algorithm using a set of training images, such as the
set of training images 200 described with reference to FIG.
2, to generate ground-truth shadow parameters S, (p) for all
of the shadowed image patches in the set of training images.
Additionally, the image processing system 100 can calculate
the feature vectors F(P,P*) from the GGPM matching results.
In one or more additional embodiments, the image process-
ing system 100 can normalize F (P,P%) to [0,1].

Furthermore, the image processing system 100 can train
the RRF algorithm by splitting the set of training images into
a training dataset and a test dataset. In at least one imple-
mentation, the image processing system 100 can use 5x2
cross validation to avoid over-fitting the RRF algorithm to
the set of training images. For instance, the image process-
ing system 100 can set the RRF algorithm to use 100
decision trees with a maximum depth of 10 and a regression

US 9,430,715 B1

17

accuracy of 0.01. In other embodiments, the image process-
ing system 100 can set the RRF algorithm to use a different
number of decision trees with a different maximum depth
and regression accuracy, as may depend on the selected
color space or selected parameters of the color space.
Smoothing and Quantizing the All Shadow Map

After generating the all shadow map S, based on the
identified shadow parameters, the image processing system
100 can then identify cast shadows in the input image.
Specifically, the image processing system 100 can identify
one or more cast shadows to remove or modify in the input
image based on the shadow parameters. FIGS. 6 A-6F illus-
trate embodiments of the input image and shadow maps
based on the input image at various stages of the shadow
detection process.

As mentioned previously, the RRF algorithm receives an
input of the concatenated feature vectors from the GGPM
algorithm and outputs shadow parameters for the image
patches in the input image 600 illustrated in FIG. 6A. The
image processing system 100 uses the shadow parameters
for the image patches in the input image 600 to generate an
all shadow map S, 602 shown in FIG. 6B, which includes all
of the light variations in the input image 600. For example,
the light variations can include cast shadows, shaded
regions, or other shadows, and can also indicate non-
shadowed regions in the input image 600.

After obtaining the all shadow map 602 the image pro-
cessing system 100 can then identify one or more shadows
to remove or modify in the input image 600. For example,
the image processing system 100 can analyze a luminance
gain map, g,%, from the all shadow map 602 to identify cast
shadow regions in the input image 600. Specifically, the
image processing system 100 can decompose the all shadow
map 602 into a plurality of shadow regions to determine the
cast shadow regions in the input image 600. From the cast
shadow regions, the image processing system 100 can
generate the cast shadow map, S_, for use in removing or
modifying the cast shadow(s) from the input image 600.

To illustrate, and as described in more detail below, the
image processing system 100 can identify the cast shadows
by optionally smoothing the all shadow map 602 (e.g., using
a content-aware smoothing algorithm), and then quantizing
and segmenting the all shadow map 602 into a plurality of
shadow regions. For example, the image processing system
100 extracts features for each shadow region and uses a
trained decision tree to predict or otherwise identify whether
each shadow region is a cast shadow region. The image
processing system 100 can use the predicted cast shadow
region(s) to compute the luminance gain value, g%, corre-
sponding to the cast shadow. The image processing system
100 then uses the luminance gain value, g%, to recover
chrominance bias values, b“?. Together, (g7, b.*, b?)
define the final cast shadow map, S..

In one or more embodiments, the image processing sys-
tem 100 can remove noise inserted into the all shadow map
602 by the RRF algorithm by applying a smoothing algo-
rithm to the luminance gain map, g%, corresponding to the
all shadow map 602. In particular, the image processing
system 100 can use an edge-aware smoothing algorithm to
avoid smoothing the luminance gain map across different
textures that have different shadow parameters. In one
implementation, applying the smoothing algorithm can
include applying a guided filter method to an initial lumi-
nance map of the all shadow map to obtain a smoothed
luminance gain map. FIG. 6C illustrates the smoothed
luminance gain map 604 based on the luminance gain map,
g,” associated with the all shadow map 602 of FIG. 6B.

10

15

20

25

30

35

40

45

50

55

60

65

18

After smoothing the luminance gain map, the image
processing system 100 can then segment the smoothed
luminance gain map 604 into a plurality of shadow regions
based on one or more features of the different shadow
regions. To illustrate, the image processing system 100 can
decompose shadows into several adjacent regions, and heu-
ristically analyze the adjacent regions to determine that the
largest region has the largest probability to be the cast
shadow. Specifically, the image processing system 100 can
segment the detected shadows from the smoothed luminance
gain map 604 into different regions corresponding to differ-
ent shadows and/or different textures within the input image
600. For example, a shadow that extends across a plurality
of textures may have different luminance gain values in each
of the corresponding textures. By segmenting the shadows
from the smoothed luminance gain map 604 into a plurality
of spatially coherent shadow regions, the image processing
system 100 can more easily identify the cast shadows to
remove from the input image.

In one or more embodiments, the image processing sys-
tem 100 can form a plurality of clusters from the smoothed
luminance gain map 604. For example, the image processing
system 100 can apply a clustering algorithm, such as a mean
shift clustering algorithm, to the smoothed luminance gain
map, g%, to form a plurality of clusters, each centered
around a cluster center (e.g., a center pixel or center pixels).
Additionally, the clustering algorithm can define clusters by
assigning each pixel in the smoothed luminance gain map to
a corresponding cluster center. Adjacent pixels assigned to
the same cluster center are thus considered to be part of the
same shadow region, R, as illustrated in FI1G. 6D. Specifi-
cally, FIG. 6D illustrates a segmented shadow map 606 that
includes the plurality of shadow regions based on the
smoothed luminance gain map 604. Thus, quantizing the
luminance gain map allows the image processing system
100 to segment the shadow map for the input image 600,
based on the degree of shadowing, into a plurality of
spatially coherent shadow regions that are more easily
identifiable by the system.

Identifying Cast Shadows from the All Shadow Map

In one or more embodiments, the image processing sys-
tem 100 can use the segmented shadow regions to determine
a set of visual features for each of the shadow regions. For
example, the visual features can be represented as:

F(R)~(Gavg 512,bb,7,) (R))

where gang is the average gain of the luminance channel of
the corresponding shadow region, and size and bb are the
size and bounding box of the shadow region, respectively.
According to one or more implementations, the image
processing system 100 can normalize the size and bounding
box with respect to the size of the input image. Additionally,
r, contains encoded shape information that describes how
much of the bounding box is occupied by the shadow region
and can be represented as:

r (R.)ﬁ
T 1Bb(R)|

Based on the extracted visual features, the image process-
ing system 100 can train a decision tree, as mentioned above,
to predict or otherwise identity whether each shadow region
is part of a cast shadow. Specifically, the image processing
system 100 can train the decision tree using manually
labeled cast shadow regions in a set of training images, such

US 9,430,715 B1

19

as the set of training images 200 of FIG. 2. To illustrate,
training the decision tree using the set of training images 200
of FIG. 2 achieves an average prediction error of 0.04 within
the range of [0,1] on the testing dataset.

The decision tree calculates a probability that each
shadow region in the segmented shadow map 606 is a cast
shadow region. For example, the decision tree can determine
the probability based on the visual features of the shadow
regions. In one or more embodiments, the image processing
system 100 can select the shadow region (e.g., R, in FIG.
6D) with the greatest calculated probability as the cast
shadow region. The image processing system 100 can gen-
erate a cast shadow seed containing the predicted cast
shadow region.

Because the cast shadow can cover multiple textures (e.g.,
objects or backgrounds) in the input image, the image
processing system 100 can also determine that one or more
shadow regions (e.g., R, in FIG. 6D) adjacent to the selected
shadow region are part of the same cast shadow. Specifically,
shadow regions that are adjacent to the selected shadow
region and also have luminance gain values below a lumi-
nance threshold (e.g., adjacent shadow regions that are
darker than the selected shadow region). For example, as
shown in FIG. 6D, shadow region R, is the detected cast
shadow region. R, is adjacent to R, and the averaged
luminance gain value of R, is smaller than the averaged
luminance gain value of R,. Thus, the image processing
system 100 treats R, as part of the cast shadow and adds R,
to the cast shadow seed.

In one or more additional embodiments, the image pro-
cessing system 100 can modify the cast shadow seed R_,,
to verify that the cast shadow region covers the cast shadow
of the input image. In particular, the image processing
system 100 can dilate the cast shadow seed until the average
luminance gain gang of the boundary pixels of the cast
shadow seed is above a predetermined luminance threshold
(e.g., 0.95). As shown in FIG. 6E, the image processing
system 100 can generate a final cast shadow seed region
R, ./ 608 as a binary map. In one or more additional
embodiments, the image processing system 100 can com-
pute the approximated luminance gain of the seed region,
2...i» as the average value of 20% pixels with the largest in
R,,.; - One or more implementations may also take into
consideration that R,/ can include a plurality of shadows
with a top layer of shadows corresponding to pixels with
highest luminance gains.

According to one or more additional embodiments, the
image processing system 100 can soften the boundary of the
cast shadow region (which may be denoted simply as g___/*)
to account for errors, especially in regions with soft shadows
in the input image. FIG. 6F illustrates a cast shadow map
610 corresponding to the cast shadow seed of FIG. 6E with
softened boundaries. Specifically, the image processing sys-
tem 100 can produce a luminance gain map, g *, that more
accurately captures the softness of shadows in the input
image. For example, the image processing system 100 can
apply an optimization algorithm such as a Markov Random
Field (MRF) algorithm with an energy function defined as:

E(gh)=) Dgk(pn+dx ' Mighp). gh@)

4 GeN(p)

where p and q are pixel indices, and A is a weight variable
balancing data and smoothness terms. The data term D(g *
(p)) is defined as the weighted combination of two terms:

D(gl(p)=a,12. ()-8 eud 1 +(1-2,) 8. (0)-2, ()

10

15

20

25

30

35

40

45

50

55

60

65

20

Based on the weighting factor a, the data term encourages
g~ to be close to either the average shadow value in the seed
map, g, or the initial luminance gain map, gr*. a, is
computed as:

if gh.a(pi) = gh(py)

1
@p :{ L L .
8(l - goea(Pi)] 8/ (Pi), Ta), otherwise

where G(x,0)=exp (—x>,0°) is a Gaussian function. If
2. is larger than g, signifying that a current pixel is
likely covered by other shadows (such as R, in FIG. 6D), g_*
is constrained to be close to the cast shadow region g _*.
If g~ is much smaller than g,%, the pixel is likely located
in a soft shadow boundary, and the second term of the MRF
algorithm dominates the data term.

The smoothness term M(g X (p),2.2(q)) is defined as:

Mg p)e H)=le.)~) 1*4(p.9)
where the affinity weight A (p.q) is defined as:

A, =G(Ip)-L(@)||:9,,)

which encourages g “(p) and g *(q) to be the same if the two
pixels have the same color in the input image.

Additionally, the image processing system 100 can obtain
the final g map can by solving the MRF algorithm using
a-expansion, where g * is quantized into 128 levels. In one
or more embodiments, the image processing system 100 can
set =10, 0,=0.1, 0,,=0.2. In other embodiments, the image
processing system 100 may set A, 0, O,, or to other values.

In one or more embodiments, the image processing sys-
tem 100 can obtain the chrominance bias channels b, b® of
the cast shadow map S_ by scaling the initial estimates of the
chrominance bias channels according to the luminance gain
channel g*:

bA=b *(1-g Hi(1-g5)

bP=b*(1-gV(1-g5)

The image processing system 100 can optimize for g© and
using g~ to scale b_““® to prevent the introduction of
additional color shift. Additionally, by optimizing g”, the
image processing system 100 may produce more accurate
results than by optimizing b_“"®, because g~ may contain
less noise than the chrominance channels. Alternatively, the
image processing system 100 may optimize other values
based on the selected color space and corresponding shadow
parameters.

As mentioned previously, the image processing system
100 can use the cast shadow map 610 in a shadow removal
process. Specifically, the shadow removal process may use
the shadow parameters of the cast shadow map 610 to
remove the cast shadow from the input image 600 by
synthesizing the pixels in the cast shadow of the input image
600 based on the identified shadow parameters. In one or
more embodiments, the image processing system 100 may
use the cast shadow map 610 derived above to perform the
shadow removal process described below. In one or more
alternative embodiments, the image processing system 100
can use the cast shadow map 610 described herein to
perform one or more shadow manipulation processes other
than the shadow removal process described below.

In alternative embodiments, the image processing system
100 can perform additional or different operations to gen-
erate the cast shadow map 610 for the input image 600. For
example, the image processing system 100 may optionally

US 9,430,715 B1

21

segment the all shadow map 602 into a segmented shadow
map 606 without smoothing the all shadow map 602.
Alternatively, the image processing system 100 can option-
ally perform additional smoothing or optimization opera-
tions on the all shadow map 602 before creating the seg-
mented shadow map 606. Additionally, or alternatively, the
image processing system 100 can use a different softening
algorithm to create the cast shadow map 610 from the binary
cast shadow seed 608.

Additionally, or alternatively, the image processing sys-
tem 100 can use other processes to derive shadow param-
eters for the image patches of the input image. For example,
the image processing system 100 may allow a user to
manually label the cast shadow in the input image for
removing from the input image. Alternatively, the image
processing system 100 can use a different cast shadow
detection method, including using other color spaces or
shadow parameters than described herein, to obtain the cast
shadow.

Patch-Based Synthesis for Shadow Removal

According to one or more embodiments, the image pro-
cessing system 100 can generate a naive (or “direct”)
inversion of an input image from a cast shadow map. In
particular, the image processing system 100 can generate the
naive inversion by modifying each pixel independently
based on the corresponding shadow parameters (e.g., by
dividing the input image 600 by the final shadow map g_*
and associated the chrominance values):

L= p)g p)
Lo=F{p)/b.1(p)

LEP=Pp)b.(p)

where 1, is the naive inversion result, and superscripts L, a,
b indicate the corresponding luminance and chrominance
channels.

In one or more embodiments, the naive inversion can
remove most of the cast shadow based on a previously
identified cast shadow map and preserve the structure of the
input image 600. Estimation errors in the cast shadow map,
however, can cause the naive inversion to include at least
some color shift and/or to be inconsistent relative to color,
noise, and fine detail of existing non-shadowed regions of
the input image. The inconsistencies can be due to inaccu-
racies in the estimation of the shadow parameters, but also
inherent limitations of simple per-pixel color/intensity mod-
els that do not model the loss of dynamic range, differences
in noise properties, complex bidirectional reflectance distri-
bution, inter-reflections, translucency, and other complex
material properties that may be different between the shad-
owed versus non-shadowed regions.

In one or more embodiments, the image processing sys-
tem 100 can leverage information about the textures in the
input image. Specifically, textures in the shadowed regions
of the input image also exist in the non-shadowed regions.
Thus, the image processing system 100 can guide a patch
synthesis algorithm using the naive inversion of the input
image to reconstruct the shadowed region from the non-
shadowed parts and produce a result that is more consistent
with the rest of the input image than the naive inversion
alone. For example, the image processing system 100 can
also apply a local color correction step that adaptively
combines an initial patch synthesis result with the naive
inversion to produce a final result, as described in more
detail below with regard to FIGS. 7A-7F.

10

15

20

25

30

35

40

45

50

55

60

65

22

As mentioned, the image processing system 100 can use
patch-based synthesis to recover image patches in the cast
shadow region using image patches from the non-shadow
regions of the input image. In one or more embodiments, the
image processing system 100 can avoid color inconsisten-
cies in the synthesized result because the image patches in
the synthesized shadow regions are drawn from the non-
shadow regions. To illustrate, the image processing system
100 can use a guided synthesis algorithm, such as a guided
variant of the image melding algorithm described in “Image
Melding: Combining inconsistent images using patch-based
synthesis,” ACM Trans. Graph. 31, 4, 82:1-82:10 by Darabi
et al. hereby incorporated by reference in its entirety. The
image-melding algorithm can provide support for patch
scaling, rotation, reflection, and color gain and bias in
various image-processing operations. Additionally, the
image processing system 100 can apply the image-melding
algorithm in a coarse-to-fine manner using an image pyra-
mid.

FIGS. 7A-7F illustrate embodiments of an input image
700 and images derived from the input image 700 in
association with a patch-based synthesis process. Specifi-
cally, FIG. 7A illustrates an input image 700 for which the
image processing system 100 has identified a cast shadow
map. FIG. 7B illustrates a naive inversion 702 of the input
image 700 of FIG. 7A. As shown, although the naive
inversion may include color shifting artifacts, the naive
inversion 702 can provide a good rough estimate of the final
result that the image processing system 100 can leverage for
guiding the synthesis process. Specifically, the image pro-
cessing system 100 can use the naive inversion 702 in two
ways: (1) to initialize the synthesis result at the coarsest
level; and (2) to use as a guidance layer during the synthesis
of'the shadowed region. Specifically, the distance between P
(a shadowed image patch to be synthesized) and Q (a source
image patch in the non-shadowed region) can be defined as:

d@, Q():)H)P, OlA+P*IL.(P),Q*e(P)+b(P) |+ *E(g(P),b
P

where ||P, Q|, is the average L2 color distance of two
patches, I, (P) represents the image patch in the naive
inversion [, 702 that is at the same position as P, and [and
y are balancing weights. The second term B*|[I,, (P),Q*g
(P)+b (P)||, is a guidance term that constrains the matched
source patch Q to be similar to the naive inversion result
I,(P). The additional gain g (P) and bias b (P) are indepen-
dent of the gain/bias terms used in the computation of the
shadow map and are used in the above equation to compen-
sate for possible color and intensity shifts in the naive
inversion 702. The third term E(g(P,),b(P;)) prevents unre-
alistically large gain and bias, defined as:

E(g, b)= Y (g = 1| +|t* - 0Dk € {L, a, b}
k

In one or more embodiments, the balancing weight § can
be an important factor in providing an accurate final syn-
thesis result. If f is too small, the guidance term may be too
weak, and geometric constraints may be broken in the final
synthesis result. FIG. 7C illustrates a reconstructed image
704 with a $=0.3. If p is too large, the algorithm may not
converge for examples where the textures are random in the
shadow region and are not easily reconstructed from the
non-shadow regions. FIG. 7D illustrates a reconstructed
image 706 with a $=30.

US 9,430,715 B1

23

Although a single, fixed [can generate good results in
many cases, the guidance aspect of the synthesis result may
have a greater effect at coarse scales for generating a
consistent geometric layout of different scene regions, while
more flexibility at fine scales can synthesize high quality
texture details with a local patch similarity term. Thus, the
image processing system 100 can use a large { to bias the
synthesis algorithm more towards geometric consistency,
and a smaller { at finer scales to weaken the constraint of the
guidance layer. FIG. 7E illustrates a final synthesis result
708 using the adaptive f§ in a synthesis process guided by the
naive inversion.

In contrast, FIG. 7F illustrates a synthesis result 710 as
guided by the input image, rather than the naive inversion.
As shown, the final synthesis result (shown in FIG. 7E) that
is guided by the naive inversion produces a more accurate
reconstruction of the original image without the cast shad-
ows than the synthesis result (shown in FIG. 7F) that is
guided by the input image. Thus, a guidance layer resulting
from a good shadow map estimate and the naive inversion
of the input image can allow the image processing system
100 to achieve a high quality final synthesis result.

In one or more embodiments, the image processing sys-
tem 100 can also set parameters to specific values based on
the desired result and/or according to various implementa-
tions of the shadow removal process. In one specific
example, the image processing system 100 can decompose
the input image into a pyramid with a coarsest scale of 30
pixels and increase the scale by a factor of 1.4 for each
pyramid level. Additionally, the image processing system
100 can set 3 to 30 in the first five levels of the pyramid and
gradually decrease §§ to 0.3 in the remaining levels. The
image processing system 100 can also compute patch dis-
tance for image patch pairs in the CIELab color space with
a gain range [0.9, 1.1] and bias range [-0.05, 0.05]. The
image processing system 100 can also fix y at 0.5.
Adaptive Local Correction

In one or more embodiments, the image processing sys-
tem 100 can use the patch synthesis results described with
regard to FIGS. 7A-7F as the final synthesis result. As
previously mentioned, however, the synthesis result can
include artifacts associated with complex scenes, especially
when certain textures exist only in the shadowed region of
the input image and no good correspondences exist in the
non-shadowed region. Such problems can result in blurri-
ness, changes in color/texture, or inaccurate geometry of
structures in the synthesis result. FIGS. 8A-8E illustrate
embodiments of an input image 800 and a plurality of
images derived from the input image using 800 a patch-
based synthesis (e.g., shadow removal) process. Specifically,
FIG. 8A illustrates an input image 800 that includes a
portion of the input image 600 of FIG. 6A. For example,
FIG. 8B illustrates the initial synthesized result 802 for the
input image 800 of FIG. 8A having incorrect color and/or
boundary synthesis.

According to one or more embodiments, the image pro-
cessing system 100 can find a luminance gain value and
chrominance bias values that capture the transformation
from the input image to the initial synthesized result in a
synthesized shadow map. Optionally, the image processing
system 100 can apply local corrections to the synthesized
shadow map in regions where the initial synthesized result
has low confidence to correct the synthesis artifacts. Spe-
cifically, the image processing system 100 can calculate a
synthesis confidence C(p) for each pixel based on the naive
inversion [, and the initial synthesis result I (shown in FIG.
8B):

30

40

45

55

24

ming p [|5:(P), Is(P) = g(p) + (B)(p)l
(Pl + &

Clp)=1-

where P is a 5x5 image patch centered at p. FIG. 8C
illustrates the naive inversion 804 of the portion of the input
image. Searching the best gain for the L channel and the best
bias for the a and b channels per patch can minimize the
distance between I, (P) and I(P). The image processing
system 100 can also normalize the confidence by the average
pixel luminance ||, (P)||, to avoid a bias in dark regions, and
£ is a variable that handles division by zero. FIG. 8D
illustrates an example confidence map 806 (also referred to
herein as the confidence map C) based on the input image
800, and the initial synthesis result 802, and the naive
inversion 804. If I (P,) and I (P,) contain the same structure
and only differ by global color transform, the confidence for
the particular patch can be high. Otherwise, if I, (P,) and 1,
(P,) contain structural differences, the confidence value can
be low, indicating incorrect patch synthesis.

In one or more embodiments, the image processing sys-
tem 100 can propagate shadow parameters in the synthe-
sized shadow map S, from high confidence pixels to low
confidence pixels based on the confidence map. In particular,
the image processing system 100 can optimize a quadratic
objective function for the k™ channel of the synthesized
shadow map, denoted as S %, to produce an interpolated map
S* by minimizing:

E =3 Clp)+ (s (p) - SEp))” +
g

Aox Yo (L= Cp)=A(p, @ (5" (p) - (g

qGeN(p)

The first term in the above equation is a data term that
constrains S* to be close to S * at high confidence pixels. The
second term is a smoothness term that is weighted by the
color difference of neighboring pixels, along with 1-C.
Thus, low confidence pixels can receive parameter values
from neighboring pixels that have similar colors to the low
confidence pixels. Additionally, in one example, the image
processing system 100 can set A =1 and solve the linear
system using a conjugate gradient.

In one or more embodiments, the image processing sys-
tem 100 can obtain the final synthesis result 808, illustrated
in FIG. 8E, by applying the corrected shadow map on the
original input image. Specifically, for high confidence pixels
where texture synthesis is determined to be good (e.g.,
meeting a confidence threshold), the image processing sys-
tem 100 uses the synthesized image I, to re-estimate the
shadow parameters and substitute the re-estimated shadow
parameters in the naive inversion I,. Thus, the image pro-
cessing system 100 performs an operation similar to over-
writing the naive inversion I, at one or more pixels with the
corresponding pixels from the initial synthesized result 1.

For low confidence pixels where texture synthesis fails,
the image processing system 100 can defer to the naive
inversion L. In particular, the image processing system 100
can use the pixels from the naive inversion I, and apply a
color shift to the corresponding pixels in I,,. For example, the
image processing system 100 can remove the color shifts in
1, by interpolating parameters from nearby high confidence
pixels from L. Thus, the image processing system 100 can

US 9,430,715 B1

25

create a final synthesis result 808 that is a fusion of the initial
synthesis result I, and the naive inversion I, of the input
image.

In one or more alternative embodiments, the image pro-
cessing system 100 can generate an alpha blending 810 of
the initial synthesized image 802 and the naive inversion
804, as shown in FIG. 8F. Specifically, the image processing
system 100 can use the confidence map 806 as an alpha
matte to linearly interpolate the initial synthesis result 802
and the naive inversion 804 of the input image 800 to obtain
the alpha blending 810. The alpha blending 810, however,
may preserve color shift artifacts from the naive inversion
804 while synthesizing the image patches of the input image
800.

In one or more embodiments, the image processing sys-
tem 100 can implement the shadow detection and removal
operations described previously in C++. In one implemen-
tation, the image processing system 100 used to produce the
figures described herein includes a computing device with a
3.4 GHz processor and 2 GB of RAM. The image processing
system 100 down-samples the figures to 600x450 pixels. For
a single-threaded processing implementation, the image
processing system 100 takes about 1.8 minutes for all
shadow map generation, 9 seconds for cast shadow detec-
tion, and 2 minutes for shadow removal.

As discussed above, image processing system 100 can
identify and remove shadows from images, including com-
plex images that contain shadowed regions with large tex-
ture variations. In addition to the foregoing, the image
processing system 100 can allow for filtering, transforming,
and reapplication of shadows to edited results. Thus, the
image processing system 100 can allow a user to suppress
(rather than totally remove) shadows, enhance shadows,
soften shadows, and reshape shadows. For example, FIGS.
8G-8L illustrate various shadow editing or removal results
of an input image 811. In particular, FIG. 8H shows a
modified image 812 created by the image processing system
100 by recognizing then suppressing the shadow of the input
image 811. FIG. 81 shows a modified image 814 created by
the image processing system 100 by recognizing then
enhancing the shadow of the input image 811. FIG. 8] shows
a modified image 816 created by the image processing
system 100 by recognizing then softening the shadow of the
input image 811. FIG. 8K shows a modified image 818
created by the image processing system 100 by recognizing
then reshaping the shadow of the input image 811. Finally,
FIG. 8L shows a modified image 819 created by the image
processing system 100 by recognizing then removing the
shadow of the input image 811. As FIGS. 8G-8L illustrate,
the image processing system 100 can provide a user with
great flexibility to recognize and modify shadows.

Furthermore, the methods described above in relation to
identifying and removing cast shadows can be iteratively
repeated to remove multiple shadows or even one or more
layers of overlapping shadows. In particular, the cast shadow
detection described above can isolate and remove only a top
layer cast shadow or multiple layers of cast shadows. The
ability to extract and remove different shadows layers can
allow the image processing system 100 to edit or otherwise
manipulate different shadow layers in different ways. For
example, FIG. 8M illustrates an input image 820 with
layered shadows. In particular, input image 820 includes an
inner shadow created by a car and an outer shadow created
by a building. The image processing system 100, as
described above, includes the ability to recognize different
layers of shadows. For example, FIG. 8N a modified image
822 created by the image processing system 100 by recog-

25

30

40

45

55

26

nizing then removing the outer shadow of the input image
820. As shown, the modified image 822 retains the inner
shadow created by the car. FIG. 80 on the other hand shows
a modified image 824 created by the image processing
system 100 by recognizing then removing the inner shadow
of the modified image 822.

FIGS. 1-80, the corresponding text, and the examples,
provide a number of different systems and devices for
tracking visual gaze information and providing content and
analytics based on the visual gaze information. In addition
to the foregoing, embodiments can be described in terms of
flowcharts comprising acts and steps in a method for accom-
plishing a particular result. For example, FIGS. 9 and 10
illustrate flowcharts of exemplary methods in accordance
with one or more embodiments.

FIG. 9 illustrates a flowchart of a method 900 of identi-
fying cast shadows in an image. The method 900 includes an
act 902 of segmenting an input image 300, 600 into a
plurality of grid cells 306. For example, act 902 can involve
segmenting the input image 300, 600 into a plurality of grid
cells 306 of equal size. Alternatively, act 902 can involve
segmenting the input image 300, 600 into a plurality of grid
cells 306 of different sizes based on size dimensions of the
input image 300, 600. Act 902 can also involve down-
sampling the input image 300, 600 to a smaller resolution
prior to segmenting the input image 300, 600 into the
plurality of grid cells 306.

Act 902 can further involve segmenting the input image
300, 600 into a plurality of grid cells 306 in response to an
identification of the input image 300, 600 by a user. Act 902
can alternatively involve segmenting a portion of the input
image 300, 600 into a plurality of grid cells 306 in response
to a selection of the portion of the input image 300, 600 by
a user.

The method 900 also includes an act 904 of determining
nearest neighbor patches for image patches of the input
image. For example, act 904 involves determining, for
image patches 302 of the input image 300, 600 one or more
nearest neighbor patches 304 from grid cells of the plurality
of'grid cells 306 by identifying, for a given image patch, one
or more corresponding image patches that have one or more
visual features in common with the given image patch. To
illustrate, act 904 can involve determining the one or more
nearest neighbor patches 304 from the grid cells 306 using
apatch matching algorithm applied to the grid cells 306. The
method 900 can also include an act of calculating a prede-
termined range for identifying whether the one or more
corresponding image patches have one or more visual fea-
tures in common with given image patches by setting a
matching precision and a matching recall of the patch
matching algorithm based on a parameter threshold corre-
sponding to coverage of shadow pixels in a training dataset.

Additionally, the method 900 includes an act 906 of
detecting shadows in the input image. For example, act 906
involves detecting shadows in the input image 300, 600
based on extracted feature vectors of the image patches 302
and their one or more nearest neighbor patches 304. To
illustrate, act 906 can involve applying a regression algo-
rithm to combined feature vectors of the plurality of image
patches in the input image 300, 600 to detect the shadows in
the input image 300, 600.

Act 906 can also involve generating feature vectors for
the image patches 302 and their one or more nearest neigh-
bor patches 304 by identifying the one or more visual
features, a matching cost, or spatial offset information of the
one or more nearest neighbor patches 304 relative to their
corresponding image patches 302. Specifically, the one or

US 9,430,715 B1

27

more visual features can comprise at least one of a lumi-
nance gain value or a chrominance bias value within a
CIELab color space.

As part of act 906, or as an additional act, the method 900
can include an act of calculating, for the image patches 302,
a feature vector for each matching pair comprising the image
patch 302 and a corresponding nearest neighbor patch 304.
The method 900 can further include an act of ranking the
feature vectors of the image patches 302 and their one or
more nearest neighbor patches based on a luminance gain
value of the feature vectors, and concatenating the ranked
feature vectors for an image patch into a combined feature
vector for the image patch.

As part of act 906, or as an additional act, the method 900
can include an act of removing noise associated with the
detected shadows prior to identifying the cast shadow by
applying a smoothing algorithm to the detected shadows.
For example, the method 900 can remove noise by applying
a smoothing algorithm to a luminance gain map 602 derived
from the image patches and their one or more corresponding
nearest neighbor patches.

The method 900 can also include an act 908 of segment-
ing the detected shadows into shadow regions R, R;. For
example, act 908 involves segmenting the detected shadows
into one or more shadow regions R, R, based on luminance
variations of the detected shadows. To illustrate, act 908 can
involve applying a clustering algorithm to the detected
shadows to form a plurality of clusters. Act 908 can further
involve assigning each pixel of the detected shadows to a
cluster center of one of the plurality of clusters. To illustrate,
act 908 can involve designating adjacent pixels that are
assigned to the same cluster center as a shadow region R,
R,.

The method 900 further includes an act 910 of identifying

cast shadows in the input image 300, 600. For example, act
910 involves identifying cast shadows in the input image
300, 600 based on the one or more shadow regions R, R;.
To illustrate, act 910 can involve calculating a probability
that each of the one or more shadow regions R,, R, is the
cast shadow by applying a decision tree to one or more
visual features of the one or more shadow regions R, R,
and selecting a shadow region R, with a highest calculated
probability from the decision tree as the cast shadow.
Additionally, act 908 can involve selecting shadow regions
that are adjacent to the selected shadow region R, with the
highest calculated probability and have a luminance gain
value smaller than the selected shadow region R, with the
highest calculated probability as the cast shadow.

The method 900 also includes an act of generating a cast
shadow map 610. For example, generating the cast shadow
map 610 can involve generating a cast shadow map 610
comprising the identified cast shadows in the input image
300, 600. To illustrate, the method 900 can include an act of
combining a selected shadow region R, and adjacent shadow
regions R, having a luminance gain value smaller than the
selected shadow region R, as the cast shadow, and gener-
ating the cast shadow map 610 based on luminance gain
values of the selected shadow region R, and the adjacent
shadow regions R, having a luminance gain value smaller
than the selected shadow region R,,.

The method 900 can also include an act of dilating the cast
shadow until an average luminance gain value of pixels at a
boundary of the cast shadow meets a predetermined lumi-
nance threshold, and softening the boundary of the cast
shadow by applying a softening algorithm to the pixels at the
boundary of the cast shadow. For example, the method 900

10

15

20

25

30

35

40

45

50

55

60

65

28

can include the act of softening the boundary of the cast
shadow by applying a Markov Random Field algorithm to
the cast shadow map 610.

The method 900 can also include an act of receiving a user
input to modify the cast shadow, and modifying one or more
of the shadow parameters associated with a plurality of
pixels in the cast shadow based on the user input. To
illustrate, the method 900 can include an act of removing the
cast shadow from the input image 300, 600.

The method 900 can further include an act of identifying
multiple cast shadows by iteratively repeating the steps of:
determining, for images patches 302 of the input image 300,
600, one or more nearest neighbor patches 304 from grid
cells of the plurality of grid cells 306, detecting shadows in
the input image based on feature vectors of the image
patches 302 and their one or more nearest neighbor patches
304, segmenting the detected shadows into one or more
shadow regions Ry, R, based on luminance variations of the
detected shadows, and identifying a cast shadow in the input
image 300, 600 based on the one or more shadow regions
Ro, R;.

The method 900 can additionally include an act of iden-
tifying a first cast shadow from a first object and a second
cast shadow from a second object, the first cast shadow
overlapping the second cast shadow. The method 900 can
also include an act of removing the first cast shadow from
the input image 300, 600 and leaving the second cast shadow
in the input image 300, 600. Alternatively, the method 900
can include an act of removing the first cast shadow from the
input image and iteratively removing the second cast
shadow from the input image 300, 600 after removing the
first cast shadow from the input image 300, 600. Alterna-
tively, the method 900 can include an act of applying a first
type of modification to the first cast shadow and a second
type of modification to the second cast shadow.

FIG. 10 illustrates a flowchart of a method 1000 of
removing cast shadows from an input image 700, 800. The
method 1000 includes an act 1002 of identifying shadow
parameters of a cast shadow. For example, act 1002 includes
identifying one or more shadow parameters for pixels cor-
responding to a cast shadow of an input image 700, 800.
Specifically, the one or more shadow parameters can identify
differences between one or more color space parameters of
pixels corresponding to the cast shadow and one or more
color space parameters of a non-shadowed version of the
pixels.

Furthermore, act 1002 can involve identifying one or
more shadow parameters based on a cast shadow map 610
automatically generated in response to a user selection of the
input image 700, 800. Alternatively, act 1002 can involve
identifying one or more shadow parameters based on a
manual user selection of one or more shadow regions Ry, R,
within the input image 700, 800.

The method 1000 further includes an act 1004 of gener-
ating a naive inversion of the input image. For example, act
1004 involves generating a naive inversion 702, 804 of the
input image 700, 800 by reducing, for each pixel corre-
sponding to the cast shadow, one or more color space
parameters of the pixel based on the one or more shadow
parameters to set the one or more color space parameters at
a corresponding parameter threshold. To illustrate, act 1004
can involve generating the naive inversion of the input
image 700, 800 by modifying a luminance gain value and
one or more chrominance bias values of pixels correspond-
ing to the cast shadow according to the one or more shadow
parameters.

US 9,430,715 B1

29

The method 1000 also includes an act 1006 of removing
the cast shadow from the input image 700, 800. For
example, act 1006 involves removing the cast shadow from
the input image 700, 800 by synthesizing a plurality of
image patches corresponding to the cast shadow based on a
plurality of non-shadow image patches from the input image
700, 800 and a plurality of image patches from the naive
inversion 702, 804 of the input image 700, 800. To illustrate,
act 1006 can involve constraining a source image patch from
anon-shadowed region of the input image used to synthesize
a shadowed image patch 302 of the input image 700, 800 to
have one or more color space parameters within a predeter-
mined threshold of one or more color space parameters of a
corresponding image patch in the naive inversion 702, 804.

Additionally, or alternatively, act 1006 can involve apply-
ing an adaptive balancing variable to a guidance term of a
synthesis algorithm, wherein a value of the adaptive balanc-
ing variable is based on a granularity of the synthesis
algorithm. To illustrate, act 1006 can involve setting the
adaptive balancing variable above a threshold at coarse
granularity above a granularity threshold. Alternatively, act
1006 can involve setting the adaptive balancing variable
below the threshold at fine granularity below the granularity
threshold.

As part of act 1006, or as an additional act, the method
1000 can include an act of calculating a synthesis confidence
value for the pixels in the synthesized plurality of image
patches to generate a confidence map 806. The method 1000
can further include an act of synthesizing one or more pixels
having a synthesis confidence value that meets a confidence
threshold using the one or more shadow parameters from a
plurality of other pixels in the synthesized plurality of image
patches having a color difference relative to the one or more
pixels within a color threshold.

Additionally, the method 1000 can include an act of
synthesizing one or more pixels having a synthesis confi-
dence value that does not meet the confidence threshold by
removing a color shift from one or more corresponding
pixels in the naive inversion 702, 804 of the input image
700, 800 based on the one or more shadow parameters from
a plurality of other pixels in the naive inversion 702, 804
having a synthesis confidence value that meets the confi-
dence threshold. The method 1000 can also include an act of
normalizing the synthesis confidence value for the pixels
based on an average pixel luminance of a corresponding
image patch in the naive inversion 702, 804.

The method 1000 can further include an act of identifying
a plurality of patch correspondences between shadowed
image patches and non-shadowed image patches in the input
image 700, 800. The method 1000 can also include an act of
detecting one or more shadows in the input image based on
one or more visual features of the patch correspondences.
The method 1000 can also include an act of segmenting the
detected shadows in the input image 700, 800 into one or
more shadow regions based on luminance variations of the
detected shadows, and identitying the cast shadow from the
one or more shadow regions Ry, R;.

In another embodiment, a method of identifying and
removing cast shadows from an image includes an act of
determining, for each image patch from a plurality of image
patches in an input image and using a grid-based patch-
matching algorithm, a plurality of nearest neighbor patches
comprising one or more visual features having a value
within a predetermined range of the corresponding image
patch. The method includes an act of detecting shadows in
the input image based on extracted feature vectors of each
image patch and the corresponding nearest neighbor

5

10

15

20

25

30

35

40

45

50

55

60

65

30

patches. The method further includes an act of identifying
one or more cast shadows from the detected shadows using
a decision tree trained using manually labeled cast shadow
regions in a training dataset. Additionally, the method
includes an act of comparing one or more color space
parameters of each pixel in the one or more identified cast
shadows to a corresponding parameter threshold. The
method also includes an act of generating a naive inversion
of the input image by modifying each pixel in the one or
more identified cast shadows to meet the corresponding
parameter threshold. The method also includes an act of
removing the one or more identified cast shadows by syn-
thesizing a plurality of image patches corresponding to the
one or more predicted cast shadows based on a plurality of
non-shadow image patches from the input image and the
naive inversion of the input image.

The method can also include an act of generating one or
more shadow regions from the detected shadows using a
clustering algorithm on the detected shadows, and identify-
ing the one or more cast shadows from the one or more
shadow regions based on a calculated probability that each
of the one or more shadow regions belongs to a cast shadow.

Additionally, or alternatively, the method can include an
act of calculate a synthesis confidence value for each pixel
in the synthesized plurality of image patches to generate a
confidence map. The method can include acts of synthesiz-
ing one or more pixels having a synthesis confidence value
that meets a confidence threshold using the one or more
shadow parameters from a plurality of other pixels in the
synthesized plurality of image patches having a color dif-
ference relative to the one or more pixels within a color
threshold, and synthesizing one or more pixels having a
synthesis confidence value that does not meet the confidence
threshold by removing a color shift from one or more
corresponding pixels in the naive inversion of the input
image based on the one or more shadow parameters from a
plurality of other pixels in the naive inversion having a
synthesis confidence value that meets the confidence thresh-
old.

Embodiments of the present disclosure may comprise or
utilize a special purpose or general-purpose computer
including computer hardware, such as, for example, one or
more processors and system memory, as discussed in greater
detail below. Embodiments within the scope of the present
disclosure also include physical and other computer-read-
able media for carrying or storing computer-executable
instructions and/or data structures. In particular, one or more
of the processes described herein may be implemented at
least in part as instructions embodied in a non-transitory
computer-readable medium and executable by one or more
computing devices (e.g., any of the media content access
devices described herein). In general, a processor (e.g., a
microprocessor) receives instructions, from a non-transitory
computer-readable medium, (e.g., a memory, etc.), and
executes those instructions, thereby performing one or more
processes, including one or more of the processes described
herein.

Computer-readable media can be any available media that
can be accessed by a general purpose or special purpose
computer system. Computer-readable media that store com-
puter-executable instructions are non-transitory computer-
readable storage media (devices). Computer-readable media
that carry computer-executable instructions are transmission
media. Thus, by way of example, and not limitation,
embodiments of the disclosure can comprise at least two

US 9,430,715 B1

31

distinctly different kinds of computer-readable media: non-
transitory computer-readable storage media (devices) and
transmission media.

Non-transitory computer-readable storage media (de-
vices) includes RAM, ROM, EEPROM, CD-ROM, solid
state drives (“SSDs”) (e.g., based on RAM), Flash memory,
phase-change memory (“PCM”), other types of memory,
other optical disk storage, magnetic disk storage or other
magnetic storage devices, or any other medium which can be
used to store desired program code means in the form of
computer-executable instructions or data structures and
which can be accessed by a general purpose or special
purpose computer.

A “network” is defined as one or more data links that
enable the transport of electronic data between computer
systems and/or modules and/or other electronic devices.
When information is transferred or provided over a network
or another communications connection (either hardwired,
wireless, or a combination of hardwired or wireless) to a
computer, the computer properly views the connection as a
transmission medium. Transmissions media can include a
network and/or data links which can be used to carry desired
program code means in the form of computer-executable
instructions or data structures and which can be accessed by
a general purpose or special purpose computer. Combina-
tions of the above should also be included within the scope
of computer-readable media.

Further, upon reaching various computer system compo-
nents, program code means in the form of computer-execut-
able instructions or data structures can be transferred auto-
matically from transmission media to non-transitory
computer-readable storage media (devices) (or vice versa).
For example, computer-executable instructions or data
structures received over a network or data link can be
buffered in RAM within a network interface module (e.g., a
“NIC”), and then eventually transferred to computer system
RAM and/or to less volatile computer storage media (de-
vices) at a computer system. Thus, it should be understood
that non-transitory computer-readable storage media (de-
vices) can be included in computer system components that
also (or even primarily) utilize transmission media.

Computer-executable instructions comprise, for example,
instructions and data which, when executed at a processor,
cause a general purpose computer, special purpose com-
puter, or special purpose processing device to perform a
certain function or group of functions. In some embodi-
ments, computer-executable instructions are executed on a
general-purpose computer to turn the general-purpose com-
puter into a special purpose computer implementing ele-
ments of the disclosure. The computer executable instruc-
tions may be, for example, binaries, intermediate format
instructions such as assembly language, or even source code.
Although the subject matter has been described in language
specific to structural features and/or methodological acts, it
is to be understood that the subject matter defined in the
appended claims is not necessarily limited to the described
features or acts described above. Rather, the described
features and acts are disclosed as example forms of imple-
menting the claims.

Those skilled in the art will appreciate that the disclosure
may be practiced in network computing environments with
many types of computer system configurations, including,
personal computers, desktop computers, laptop computers,
message processors, hand-held devices, multi-processor sys-
tems, microprocessor-based or programmable consumer
electronics, network PCs, minicomputers, mainframe com-
puters, mobile telephones, PDAs, tablets, pagers, routers,

20

40

45

55

32

switches, and the like. The disclosure may also be practiced
in distributed system environments where local and remote
computer systems, which are linked (either by hardwired
data links, wireless data links, or by a combination of
hardwired and wireless data links) through a network, both
perform tasks. In a distributed system environment, program
modules may be located in both local and remote memory
storage devices.

Embodiments of the present disclosure can also be imple-
mented in cloud computing environments. In this descrip-
tion, “cloud computing” is defined as a model for enabling
on-demand network access to a shared pool of configurable
computing resources. For example, cloud computing can be
employed in the marketplace to offer ubiquitous and con-
venient on-demand access to the shared pool of configurable
computing resources. The shared pool of configurable com-
puting resources can be rapidly provisioned via virtualiza-
tion and released with low management effort or service
provider interaction, and then scaled accordingly.

A cloud-computing model can be composed of various
characteristics such as, for example, on-demand self-service,
broad network access, resource pooling, rapid elasticity,
measured service, and so forth. A cloud-computing model
can also expose various service models, such as, for
example, Software as a Service (“SaaS”), Platform as a
Service (“PaaS”), and Infrastructure as a Service (“laaS™). A
cloud-computing model can also be deployed using different
deployment models such as private cloud, community cloud,
public cloud, hybrid cloud, and so forth. In this description
and in the claims, a “cloud-computing environment” is an
environment in which cloud computing is employed.

FIG. 11 illustrates a block diagram of exemplary com-
puting device 1100 that may be configured to perform one or
more of the processes described above. One will appreciate
that one or more computing devices such as the computing
device 1100 may implement the image processing system
100. As shown by FIG. 11, the computing device 1100 can
comprise a processor 1102, a memory 1104, a storage device
1106, an I/O interface 1108, and a communication interface
1110, which may be communicatively coupled by way of a
communication infrastructure 1112. While an exemplary
computing device 1100 is shown in FIG. 7, the components
illustrated in FIG. 7 are not intended to be limiting. Addi-
tional or alternative components may be used in other
embodiments. Furthermore, in certain embodiments, the
computing device 1100 can include fewer components than
those shown in FIG. 7. Components of the computing device
1100 shown in FIG. 7 will now be described in additional
detail.

In one or more embodiments, the processor 1102 includes
hardware for executing instructions, such as those making
up a computer program. As an example and not by way of
limitation, to execute instructions, the processor 1102 may
retrieve (or fetch) the instructions from an internal register,
an internal cache, the memory 1104, or the storage device
1106 and decode and execute them. In one or more embodi-
ments, the processor 1102 may include one or more internal
caches for data, instructions, or addresses. As an example
and not by way of limitation, the processor 1102 may
include one or more instruction caches, one or more data
caches, and one or more translation lookaside buffers
(TLBs). Instructions in the instruction caches may be copies
of instructions in the memory 1104 or the storage 1106.

The memory 1104 may be used for storing data, metadata,
and programs for execution by the processor(s). The
memory 1104 may include one or more of volatile and
non-volatile memories, such as Random Access Memory

US 9,430,715 B1

33
(“RAM”), Read Only Memory (“ROM?”), a solid state disk
(“SSD”), Flash, Phase Change Memory (“PCM”), or other
types of data storage. The memory 1104 may be internal or
distributed memory.

The storage device 1106 includes storage for storing data
or instructions. As an example and not by way of limitation,
storage device 1106 can comprise a non-transitory storage
medium described above. The storage device 1106 may
include a hard disk drive (HDD), a floppy disk drive, flash
memory, an optical disc, a magneto-optical disc, magnetic
tape, or a Universal Serial Bus (USB) drive or a combination
of two or more of these. The storage device 1106 may
include removable or non-removable (or fixed) media,
where appropriate. The storage device 1106 may be internal
or external to the computing device 1100. In one or more
embodiments, the storage device 1106 is non-volatile, solid-
state memory. In other embodiments, the storage device
1106 includes read-only memory (ROM). Where appropri-
ate, this ROM may be mask programmed ROM, program-
mable ROM (PROM), erasable PROM (EPROM), electri-
cally erasable PROM (EEPROM), electrically alterable
ROM (EAROM), or flash memory or a combination of two
or more of these.

The /O interface 1108 allows a user to provide input to,
receive output from, and otherwise transfer data to and
receive data from computing device 1100. The I/O interface
1108 may include a mouse, a keypad or a keyboard, a touch
screen, a camera, an optical scanner, network interface,
modem, other known I/O devices or a combination of such
1/0O interfaces. The I/O interface 1108 may include one or
more devices for presenting output to a user, including, but
not limited to, a graphics engine, a display (e.g., a display
screen), one or more output drivers (e.g., display drivers),
one or more audio speakers, and one or more audio drivers.
In certain embodiments, the I/O interface 1108 is configured
to provide graphical data to a display for presentation to a
user. The graphical data may be representative of one or
more graphical user interfaces and/or any other graphical
content as may serve a particular implementation.

The communication interface 1110 can include hardware,
software, or both. In any event, the communication interface
1110 can provide one or more interfaces for communication
(such as, for example, packet-based communication)
between the computing device 1100 and one or more other
computing devices or networks. As an example and not by
way of limitation, the communication interface 1110 may
include a network interface controller (NIC) or network
adapter for communicating with an Ethernet or other wire-
based network or a wireless NIC (WNIC) or wireless
adapter for communicating with a wireless network, such as
a WI-FL.

Additionally or alternatively, the communication inter-
face 1110 may facilitate communications with an ad hoc
network, a personal area network (PAN), a local area net-
work (LAN), a wide area network (WAN), a metropolitan
area network (MAN), or one or more portions of the Internet
or a combination of two or more of these. One or more
portions of one or more of these networks may be wired or
wireless. As an example, the communication interface 1110
may facilitate communications with a wireless PAN
(WPAN) (such as, for example, a BLUETOOTH WPAN), a
WI-FI network, a WI-MAX network, a cellular telephone
network (such as, for example, a Global System for Mobile
Communications (GSM) network), or other suitable wireless
network or a combination thereof.

Additionally, the communication interface 1110 may
facilitate communications various communication proto-

10

15

20

25

30

40

45

50

55

60

65

34

cols. Examples of communication protocols that may be
used include, but are not limited to, data transmission media,
communications devices, Transmission Control Protocol
(“TCP”), Internet Protocol (“IP”), File Transfer Protocol
(“FTP”), Telnet, Hypertext Transfer Protocol (“HTTP”),
Hypertext Transfer Protocol Secure (“HTTPS”), Session
Initiation Protocol (“SIP”), Simple Object Access Protocol
(“SOAP”), Extensible Mark-up Language (“XML”) and
variations thereof, Simple Mail Transfer Protocol
(“SMTP”), Real-Time Transport Protocol (“RTP”), User
Datagram Protocol (“UDP”), Global System for Mobile
Communications (“GSM”) technologies, Code Division
Multiple Access (“CDMA”) technologies, Time Division
Multiple Access (“TDMA™) technologies, Short Message
Service (“SMS”), Multimedia Message Service (“MMS”),
radio frequency (“RF”) signaling technologies, Long Term
Evolution (“LTE”) technologies, wireless communication
technologies, in-band and out-of-band signaling technolo-
gies, and other suitable communications networks and tech-
nologies.

The communication infrastructure 1112 may include
hardware, software, or both that couples components of the
computing device 1100 to each other. As an example and not
by way of limitation, the communication infrastructure 1112
may include an Accelerated Graphics Port (AGP) or other
graphics bus, an Enhanced Industry Standard Architecture
(EISA) bus, a front-side bus (FSB), a HYPERTRANSPORT
(HT) interconnect, an Industry Standard Architecture (ISA)
bus, an INFINIBAND interconnect, a low-pin-count (LLPC)
bus, a memory bus, a Micro Channel Architecture (MCA)
bus, a Peripheral Component Interconnect (PCI) bus, a
PCI-Express (PCle) bus, a serial advanced technology
attachment (SATA) bus, a Video Electronics Standards
Association local (VLB) bus, or another suitable bus or a
combination thereof.

The present disclosure may be embodied in other specific
forms without departing from its spirit or essential charac-
teristics. The described embodiments are to be considered in
all respects only as illustrative and not restrictive. For
example, the methods described herein may be performed
with less or more steps/acts or the steps/acts may be per-
formed in differing orders. Additionally, the steps/acts
described herein may be repeated or performed in parallel
with one another or in parallel with different instances of the
same or similar steps/acts. The scope of the present disclo-
sure is, therefore, indicated by the appended claims rather
than by the foregoing description. All changes that come
within the meaning and range of equivalency of the claims
are to be embraced within their scope.

What is claimed is:
1. A method of identifying cast shadows in a digital
image, the method comprising:

segmenting, by at least one processor, the digital image
into a plurality of grid cells;

determining, for image patches of the digital image, one
or more nearest neighbor patches from the plurality of
grid cells by identifying, for a given image patch, one
or more corresponding image patches that have one or
more visual features in common with the given image
patch;

detecting, by the at least one processor, shadows in the
digital image based on feature vectors of the image
patches and their one or more nearest neighbor patches;

segmenting, by the at least one processor, the detected
shadows into one or more shadow regions based on
luminance variations of the detected shadows; and

US 9,430,715 B1

35

identifying, by the at least one processor, a cast shadow in
the digital image based on the one or more shadow
regions.

2. The method as recited in claim 1, further comprising
generating the feature vectors for the image patches and
their one or more nearest neighbor patches by identifying the
one or more visual features, a matching cost, or spatial offset
information of the one or more nearest neighbor patches
relative to their corresponding image patches.

3. The method as recited in claim 2, wherein the one or
more visual features comprise at least one of a luminance
gain value or a chrominance bias value within a CIELab
color space.

4. The method as recited in claim 2, further comprising:

determining the one or more nearest neighbor patches

from each grid cell of the plurality of grid cells using
a patch matching algorithm applied to the plurality of
grid cells; and
calculating a predetermined range for identifying whether
the one or more corresponding image patches have one
or more visual features in common with given image
patches by setting a matching precision and a matching
recall of the patch matching algorithm based on a
parameter threshold corresponding to coverage of
shadow pixels in a training dataset.
5. The method as recited in claim 2, further comprising:
ranking the feature vectors of the image patches and their
one or more nearest neighbor patches based on a
luminance gain value of the feature vectors; and

concatenating the ranked feature vectors for an image
patch into a combined feature vector for the image
patch.

6. The method as recited in claim 5, wherein detecting the
shadows in the digital image based on feature vectors of the
image patches and the their one or more nearest neighbor
patches comprises applying a regression algorithm to the
combined feature vectors of the plurality of image patches in
the digital image to detect the shadows in the digital image.

7. The method as recited in claim 1, further comprising
removing noise associated with the detected shadows prior
to identifying the cast shadow by applying a smoothing
algorithm to the detected shadows.

8. The method as recited in claim 1, wherein segmenting
the detected shadows into one or more shadow regions
further comprises:

applying a clustering algorithm to the detected shadows to

form a plurality of clusters;

assigning each pixel of the detected shadows to a cluster

center of one of the plurality of clusters; and
designating adjacent pixels that are assigned to the same
cluster center as a shadow region.

9. The method as recited in claim 1, wherein identifying
the cast shadow in the digital image based on the one or
more shadow regions comprises:

calculating a probability that each of the one or more

shadow regions is the cast shadow by applying a
decision tree to one or more visual features of the one
or more shadow regions; and

selecting a shadow region with a highest calculated prob-

ability from the decision tree as the cast shadow.

10. The method as recited in claim 9, further comprising
selecting shadow regions that are adjacent to the selected
shadow region with the highest calculated probability and
have a luminance gain value smaller than the selected
shadow region with the highest calculated probability as the
cast shadow.

15

20

25

30

35

40

45

50

55

60

36

11. The method as recited in claim 10, further comprising:

dilating the cast shadow until an average luminance gain
value of pixels at a boundary of the cast shadow meets
a predetermined luminance threshold; and

softening the boundary of the cast shadow by applying a
softening algorithm to the pixels at the boundary of the
cast shadow.

12. The method of claim 1, further comprising identifying
multiple cast shadows by iteratively repeating the steps of:

determining, for images patches of the digital image, one

or more nearest neighbor patches from the plurality of
grid cells;

detecting shadows in the digital image based on feature

vectors of the image patches and their one or more
nearest neighbor patches;

segmenting the detected shadows into one or more

shadow regions based on luminance variations of the
detected shadows; and

identifying a cast shadow in the digital image based on the

one or more shadow regions.

13. A method of removing cast shadows from a digital
image, the method comprising:

identifying, by at least one processor, one or more shadow

parameters for pixels in a digital image corresponding
to a cast shadow;
generating, by the at least one processor, a naive inversion
of the digital image by reducing, for each pixel corre-
sponding to the cast shadow, one or more color space
parameters of the pixel based on the one or more
shadow parameters to set the one or more color space
parameters at a corresponding parameter threshold; and

removing the cast shadow from the digital image by
synthesizing, by the at least one processor, a plurality
of image patches corresponding to the cast shadow
based on a plurality of non-shadow image patches from
the digital image and a plurality of image patches from
the naive inversion of the digital image.
14. The method as recited in claim 13, further comprising:
calculating a synthesis confidence value for the pixels in
the synthesized plurality of image patches to generate
a confidence map; and

synthesizing one or more pixels having a synthesis con-
fidence value that meets a confidence threshold using
the one or more shadow parameters from a plurality of
other pixels in the synthesized plurality of image
patches having a color difference relative to the one or
more pixels within a color threshold.

15. The method as recited in claim 14, further comprising
synthesizing one or more pixels having a synthesis confi-
dence value that does not meet the confidence threshold by
removing a color shift from one or more corresponding
pixels in the naive inversion of the digital image based on
the one or more shadow parameters from a plurality of other
pixels in the naive inversion having a synthesis confidence
value that meets the confidence threshold.

16. The method as recited in claim 14, further comprising
normalizing the synthesis confidence value for the pixels
based on an average pixel luminance of a corresponding
image patch in the naive inversion.

17. The method as recited in claim 13, further comprising:

identifying a plurality of patch correspondences between

shadowed image patches and non-shadowed image
patches in the digital image;

detecting one or more shadows in the digital image based

on one or more visual features of the patch correspon-
dences;

US 9,430,715 B1

37

segmenting the detected shadows in the digital image into
one or more shadow regions based on luminance varia-
tions of the detected shadows; and
identifying the cast shadow from the one or more shadow
regions.
18. A system for identifying and removing cast shadows
from a digital image, comprising:
at least one processor;
at least one non-transitory computer readable storage
medium storing instructions thereon, that, when
executed by the at least one processor, cause the system
to:
determine, for each image patch from a plurality of
image patches in a digital image and using a grid-
based patch-matching algorithm, a plurality of near-
est neighbor patches comprising one or more visual
features having a value within a predetermined range
of the corresponding image patch;
detect shadows in the digital image based on extracted
feature vectors of each image patch and the corre-
sponding nearest neighbor patches;
identify one or more cast shadows from the detected
shadows using a decision tree trained using manually
labeled cast shadow regions in a training dataset;
compare one or more color space parameters of each
pixel in the one or more identified cast shadows to a
corresponding parameter threshold;
generate a naive inversion of the digital image by
modifying each pixel in the one or more identified
cast shadows to meet the corresponding parameter
threshold; and
remove the one or more identified cast shadows by
synthesizing a plurality of image patches corre-
sponding to the one or more predicted cast shadows

38

based on a plurality of non-shadow image patches
from the digital image and the naive inversion of the
digital image.

19. The system as recited in claim 18, further comprising

5 instructions that, when executed by the at least one proces-

10

15

20

sor, cause the system to:
generate one or more shadow regions from the detected

shadows using a clustering algorithm on the detected
shadows;

identify the one or more cast shadows from the one or

more shadow regions based on a calculated probability
that each of the one or more shadow regions belongs to
a cast shadow.

20. The system as recited in claim 18, further comprising
instructions that, when executed by the at least one proces-
sor, cause the system to:

calculate a synthesis confidence value for each pixel in the

synthesized plurality of image patches to generate a
confidence map;

synthesize one or more pixels having a synthesis confi-

dence value that meets a confidence threshold using the
one or more shadow parameters from a plurality of
other pixels in the synthesized plurality of image
patches having a color difference relative to the one or
more pixels within a color threshold; and

synthesize one or more pixels having a synthesis confi-

dence value that does not meet the confidence threshold
by removing a color shift from one or more correspond-
ing pixels in the naive inversion of the digital image
based on the one or more shadow parameters from a
plurality of other pixels in the naive inversion having a
synthesis confidence value that meets the confidence
threshold.

